CRISPR-Based Genome Editing in Oral and Maxillofacial Medicine: Bridging in Vitro and Animal Models to Clinical Translation

Main Article Content

Farshad Shahkhah
Mehran Bahmani
Diana Abbasi
Faezeh Sadat Moazzeni
Amin Shahinzadeh
Fatemeh Keikha
Marziyeh Saki

Abstract

The emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome-editing technology represents fundamental changes with significant implications for oral and maxillofacial medicine. The present study aimed to synthesize current evidence from fundamental in vitro studies, engineered animal models, and emerging clinical trials to critically evaluate the potential applications and challenges of this biotechnology. The current review explored the transformative effects of CRISPR-Cas9 in key issues, including developing animal models for oral cancer and hereditary syndromes, ex vivo cell engineering for immunotherapies such as Chimeric antigen receptor (CAR) T-cell (CAR-T cells) for head and neck cancers, regenerative strategies using CRISPR-enhanced induced pluripotent stem cells (iPSCs) for salivary gland and enamel repair, and rapid diagnostic platforms for oral pathogens. Although preclinical data from murine models and organoid systems offered considerable potential for target validation and mechanistic understanding, their adoption in clinical settings is constrained by significant limitations. These limitations included the lack of tissue-specific delivery vectors, including standard lipid nanoparticles or viral vectors, unresolved off-target effects, long-term safety concerns, and complex ethical and regulatory challenges. The most immediate clinical impact was anticipated in two key areas, including CRISPR-based diagnostic tools such as the SHERLOCK platform, used for identifying SARS-CoV-2 variants or drug-resistant tuberculosis, and ex vivo cellular therapies being tested in controlled trials for specific diseases. The current findings indicated that integrating CRISPR into personalized oral healthcare required coordinated efforts to overcome translational barriers, conduct thorough clinical validation, and develop standardized safety and efficacy criterion specific to dental and maxillofacial outcomes.

Article Details

How to Cite
Shahkhah, F., Bahmani, M., Abbasi, D., Sadat Moazzeni, F., Shahinzadeh, A., Keikha, F., & Saki, M. (2025). CRISPR-Based Genome Editing in Oral and Maxillofacial Medicine: Bridging in Vitro and Animal Models to Clinical Translation. Journal of Lab Animal Research, 4(6), 67–77. https://doi.org/10.58803/jlar.v4i6.91
Section
Review Article
Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Kadir AS, Asaduzzaman M, Kundu J, Rahman MA, Rabbany MG, Shemanto MU, et al. Integrating genetic insights and artificial intelligence for enhanced oral and maxillofacial cancer care. Artificial intelligence (AI) in cell and genetic engineering. 2025. p. 107-124. DOI: 10.1007/978-1-0716-4690-8_7

World health organization (WHO). Global oral health status report: Towards universal health coverage for oral health by 2030. Executive summary. Geneva: World Health Organization; 2022. Available at: https://www.who.int/publications/i/item/9789240061484

Jin L, Lamster I, Greenspan J, Pitts N, Scully C, and Warnakulasuriya S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis. 2016; 22(7): 609-619. DOI: 10.1111/odi.12428

Lahari S, Sneha Y, Sathwika C, Tharun M, and Rao TR. Innovations and implementations of clustered regularly interspaced short palindromic repeats in next-generation diagnostic tools: A review of current and emerging techniques. J Clin Sci. 2025; 22(1): 36-41. DOI: 10.4103/jcls.jcls_108_24

Lotfalizadeh N, Sadr S, Simab PA, Hajjafari A, Borji H, and Bayat Z. CRISPR/Cas9-mediated genome editing: In vivo review. J Lab Anim Res. 2022; 1(1): 47-51. DOI: 10.58803/jlar.v1i1.13

Sadr S, Simab PA, and Borji H. CRISPR-Cas9 as a potential cancer therapy agent: An update. Res Biotechnol Environ Sci. 2023; 2(1): 12-17. DOI: 10.58803/RBES.2023.2.1.02

Kim HS, Kweon J, and Kim Y. Recent advances in CRISPR-based functional genomics for the study of disease-associated genetic variants. Exp Mol Med. 2024; 56(4): 861-869. DOI: 10.1038/s12276-024-01212-3

Marimuthu A, Subramani RP, Deepika G, and Alagianambi AA. Gene therapy and CRISPR/Cas technology in dentistry: A review. Gene Ther. 2024; 12(1): 269553279. DOI: 10.5005/djas-11014-0033

Yu N, Yang J, Mishina Y, and Giannobile W. Genome editing: A new horizon for oral and craniofacial research. J Dent Res. 2019; 98(1): 36-45. DOI: 10.1177/0022034518805978

Doetschman T, and Georgieva T. Gene editing with CRISPR/Cas9 RNA-directed nuclease. Circ Res. 2017; 120(5): 876-894. DOI: 10.1161/CIRCRESAHA.116.309727

Doudna JA, and Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213): 1258096. DOI: 10.1126/science.1258096

Wang JY, and Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023; 379(6629): eadd8643. DOI: 10.1126/science.add8643

Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VK, et al. Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. Elife. 2020; 9: e57761. DOI: 10.7554/eLife.57761

Bahmani M. Nano-carrier-based delivery of CRISPR-Cas9 for oncolytic gene therapy: Insights from xenograft models. J Lab Anim Res. 2025; 4(2): 12-21. DOI: 10.58803/jlar.v4i2.66

Al-Kabani A, Huda B, Haddad J, Yousuf M, Bhurka F, Ajaz F, et al. Exploring experimental models of colorectal cancer: A critical appraisal from 2D cell systems to organoids, humanized mouse avatars, organ-on-chip, CRISPR engineering, and AI-driven platforms-challenges and opportunities for translational precision oncology. Cancers. 2025; 17(13): 2163. DOI: 10.3390/cancers17132163

Zhu Z, Shen J, Ho PCL, Hu Y, Ma Z, and Wang L. Transforming cancer treatment: Integrating patient-derived organoids and CRISPR screening for precision medicine. Front Pharmacol. 2025; 16: 1563198. DOI: 10.3389/fphar.2025.1563198

Chira S, Nutu A, Isacescu E, Bica C, Pop L, Ciocan C, et al. Genome editing approaches with CRISPR/Cas9 for cancer treatment: Critical appraisal of preclinical and clinical utility, challenges, and future research. Cells. 2022; 11(18): 2781. DOI: 10.3390/cells11182781

Feng X, Li Z, Liu Y, Chen D, and Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: From uncovering regulatory mechanisms to therapeutic applications. Exp Hematol Oncol. 2024; 13(1): 102. DOI: 10.1186/s40164-024-00570-y

Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, et al. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun. 2023; 47(1): 1-16. DOI: 10.1007/s11259-022-09967-8

Shamshirgaran Y, Liu J, Sumer H, Verma PJ, and Taheri-Ghahfarokhi A. Tools for efficient genome editing; ZFN, TALEN, and CRISPR. Applications Genome Mod Edit. 2022. p. 29-46. DOI: 10.1007/978-1-0716-2301-5_2

Saffari Natanzi A, Poudineh M, Karimi E, Khaledi A, and Haddad Kashani H. Innovative approaches to combat antibiotic resistance: Integrating CRISPR/Cas9 and nanoparticles against biofilm-driven infections. BMC Med. 2025; 23(1): 486. DOI: 10.1186/s12916-025-04323-4

Marraffini LA. The CRISPR-Cas system of Streptococcus pyogenes: Function and applications. In: Ferretti JJ, Stevens DL, and Fischetti VA, editors. Streptococcus pyogenes: Basic biology to clinical manifestations. Oklahoma City: University of Oklahoma Health Sciences Center; 2016. Available at: https://www.ncbi.nlm.nih.gov/books/NBK343995/

Haider S, and Mussolino C. Fine-tuning homology-directed repair (HDR) for precision genome editing: Current strategies and future directions. Int J Mol Sci. 2025; 26(9): 4067. DOI: 10.3390/ijms26094067

Yang H, Ren S, Yu S, Pan H, Li T, Ge S, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci. 2020; 21(18): 6461. DOI: 10.3390/ijms21186461

Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M, et al. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Bioimpacts. 2022; 12(4): 371-391. DOI: 10.34172/bi.2022.23871

Makarova KS, and Koonin EV. Annotation and classification of CRISPR-Cas systems. CRISPR: Methods and protocols. 2015. p. 47-75. DOI: 10.1007/978-1-4939-2687-9_4

Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, et al. Novel CRISPR-Cas Systems: An updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci. 2021; 22(7): 3327. DOI: 10.3390/ijms22073327

Bharathkumar N, Sunil A, Meera P, Aksah S, Kannan M, Saravanan KM, et al. CRISPR/Cas-based modifications for therapeutic applications: A review. Mol Biotechnol. 2022; 64(4): 355-372. DOI: 10.1007/s12033-021-00422-8

Tong B, Dong H, Cui Y, Jiang P, Jin Z, and Zhang D. The versatile type V CRISPR effectors and their application prospects. Front Cell Dev Biol. 2021; 8: 622103. DOI: 10.3389/fcell.2020.622103

Hillary VE, and Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol. 2023; 65(3): 311-325. DOI: 10.1007/s12033-022-00567-0

Babu K, Kathiresan V, Kumari P, Newsom S, Parameshwaran HP, Chen X, et al. Coordinated actions of Cas9 HNH and RuvC nuclease domains are regulated by the bridge helix and the target DNA sequence. Biochemistry. 2021; 60(49): 3783-3800. DOI: 10.1021/acs.biochem.1c00354

Dziedzic A, Kubina R, Skonieczna M, Madej M, Fiegler-Rudol J, Abid M, et al. CRISPR genome editing in personalized therapy for oral and maxillofacial diseases: A scoping review. Biomedicines. 2025; 13(11): 2745. DOI: 10.3390/biomedicines13112745

Wu SS, Li QC, Yin CQ, Xue W, and Song CQ. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics. 2020; 10(10): 4374-4382. DOI: 10.7150/thno.43360

Papasavva P, Kleanthous M, and Lederer CW. Rare opportunities: CRISPR/Cas-based therapy development for rare genetic diseases. Mol Diagn Ther. 2019; 23(2): 201-222. DOI: 10.1007/s40291-019-00392-3

Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, et al. Current updates of CRISPR/Cas9‐mediated genome editing and targeting within tumor cells: An innovative strategy of cancer management. Cancer Commun. 2022; 42(12): 1257-1287. DOI: 10.1002/cac2.12366

Eid A, and Mahfouz MM. Genome editing: The road of CRISPR/Cas9 from bench to clinic. Exp Mol Med. 2016; 48(10): e265. DOI: 10.1038/emm.2016.111

Kolanu ND. CRISPR-Cas9 gene editing: Curing genetic diseases by inherited epigenetic modifications. Glob Med Genet. 2024; 11(1): 113-122. DOI: 10.1055/s-0044-1785234

Cho S, Shin J, and Cho B-K. Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci. 2018; 19(4): 1089. DOI: 10.3390/ijms19041089

Solbiati J, Duran-Pinedo A, Godoy Rocha F, Gibson III FC, and Frias-Lopez J. Virulence of the pathogen Porphyromonas gingivalis is controlled by the CRISPR-Cas protein Cas3. mSystems. 2020; 5(5): e00852-20. DOI: 10.1128/mSystems.00852-20

Ono H, Obana A, Usami Y, Sakai M, Nohara K, Egusa H, et al. Regenerating salivary glands in the microenvironment of induced pluripotent stem cells. Biomed Res Int. 2015; 293570. DOI: 10.1155/2015/293570

Yamano S, Inoue K, and Taguchi Y. Application of gene therapy to oral diseases. Pharmaceutics. 2025; 17(7): 859. DOI: 10.3390/pharmaceutics17070859

Mahas A, and Mahfouz M. Engineering virus resistance via CRISPR-Cas systems. Curr Opin Virol. 2018; 32: 1-8. DOI: 10.1016/j.coviro.2018.06.002

Tripathi S, Khatri P, Fatima Z, Pandey RP, and Hameed S. A landscape of CRISPR/Cas technique for emerging viral disease diagnostics and therapeutics: Progress and prospects. Pathogens. 2022; 12(1): 56. DOI: 10.3390/pathogens12010056

Son H. Harnessing CRISPR/Cas systems for DNA and RNA detection: Principles, techniques, and challenges. Biosensors. 2024; 14(10): 460. DOI: 10.3390/bios14100460

Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer. 2021; 20(1): 126. DOI: 10.1186/s12943-021-01431-6

Barbour A, Glogauer J, Grinfeld L, Ostadsharif Memar R, Fine N, Tenenbaum H, et al. The role of CRISPR‐Cas in advancing precision periodontics. J Periodontal Res. 2021; 56(3): 454-461. DOI: 10.1111/jre.12846

Padaru M, Shetty P, Kini A, and Bhat R. CRISPR/Cas‑mediated targeted gene editing of Streptococcus mutans: A promising approach for precision dentistry for the prevention and management of caries. World Acad Sci J. 2025; 7(4): 61. DOI: 10.3892/wasj.2025.349

Niazi SK. The Dawn of in vivo gene editing era: A revolution in the making. Biologics. 2023; 3(4): 253-295. DOI: 10.3390/biologics3040014

Chavez-Granados PA, Manisekaran R, Acosta-Torres LS, and Garcia-Contreras R. CRISPR/Cas gene-editing technology and its advances in dentistry. Biochimie. 2022; 194: 96-107. DOI: 10.1016/j.biochi.2021.12.012

Niklander SE, and Hunter KD. A protocol to produce genetically edited primary oral keratinocytes using the CRISPR-Cas9 system. Oral biology: Molecular techniques and applications. New York, US: Springer; 2022. p. 217-229. DOI: 10.1007/978-1-0716-2780-8_14

Kedlaya MN, Puzhankara L, Prasad R, and Raj A. Periodontal disease pathogens, pathogenesis, and therapeutics: The CRISPR-Cas effect. CRISPR J. 2023; 6(2): 90-98. DOI: 10.1089/crispr.2022.0094

Gong T, Tang B, Zhou X, Zeng J, Lu M, Guo X, et al. Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol Oral Microbiol. 2018; 33(6): 440-449. DOI: 10.1111/omi.12247

Todor H, Silvis MR, Osadnik H, and Gross CA. Bacterial CRISPR screens for gene function. Curr Opin Microbiol. 2021; 59: 102-109. DOI: 10.1016/j.mib.2020.11.005

Hsu MN, Chang YH, Truong VA, Lai PL, Nguyen TKN, and Hu YC. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv. 2019; 37(8): 107447. DOI: 10.1016/j.biotechadv.2019.107447

Sowmya S, Augustine D, Mushtaq S, Baeshen HA, Ashi H, Hassan RN, et al. Revitalizing oral cancer research: CRISPR-Cas9 technology the promise of genetic editing. Front Oncol. 2024; 14: 1383062. DOI: 10.3389/fonc.2024.1383062

Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, et al. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer. 2023; 22(1): 35. DOI: 10.1186/s12943-023-01738-6

Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, et al. CRISPR/Cas9 gene editing: A new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett. 2022; 27(1): 49. DOI: 10.1186/s11658-022-00348-2

Amen RA, Hassan YM, Essmat RA, Ahmed RH, Azab MM, Shehata NR, et al. Harnessing the Microbiome: CRISPR-based gene editing and antimicrobial peptides in combating antibiotic resistance and cancer. Probiotics Antimicrob Proteins. 2025. DOI: 10.1007/s12602-025-10573-8

Kim HK, Cheong H, Kim MY, and Jin HE. Therapeutic targeting in ovarian cancer: Nano-enhanced CRISPR/Cas9 gene editing and drug combination therapy. Int J Nanomedicine. 2025; 20: 3907-3931. DOI: 10.2147/IJN.S507688

Wang CS, Chang CH, Tzeng TY, Lin AMY, and Lo YL. Gene-editing by CRISPR-Cas9 in combination with anthracycline therapy via tumor microenvironment-switchable, EGFR-targeted, and nucleus-directed nanoparticles for head and neck cancer suppression. Nanoscale Horiz. 2021; 6(9): 729-743. DOI: 10.1039/D1NH00254F

Hii ARK, Qi X, and Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B. 2024; 12(6): 1467-1489. DOI: 10.1039/D3TB01850D

Nie D, Guo T, Yue M, Li W, Zong X, Zhu Y, et al. Research progress on nanoparticles-based CRISPR/Cas9 system for targeted therapy of tumors. Biomolecules. 2022; 12(9): 1239. DOI: 10.3390/biom12091239

Ryczek N, Hryhorowicz M, Zeyland J, Lipiński D, and Słomski R. CRISPR/Cas technology in pig-to-human xenotransplantation research. Int J Mol Sci. 2021; 22(6): 3196. DOI: 10.3390/ijms22063196

Hryhorowicz M, Lipiński D, Hryhorowicz S, Nowak-Terpiłowska A, Ryczek N, and Zeyland J. Application of genetically engineered pigs in biomedical research. Genes. 2020; 11(6): 670. DOI: 10.3390/genes11060670

Hryhorowicz M, Zeyland J, Słomski R, and Lipiński D. Genetically modified pigs as organ donors for xenotransplantation. Mol Biotechnol. 2017; 59(9): 435-444. DOI: 10.1007/s12033-017-0024-9

Sharma D, and Subramaniam KG. A remarkable journey of porcine to human xenotransplantation. Indian J Transplant. 2024; 18(2): 109-115. DOI: 10.4103/ijot.ijot_49_22

Niemann H, and Petersen B. The production of multi-transgenic pigs: Update and perspectives for xenotransplantation. Transgenic Res. 2016; 25(3): 361-374. DOI: 10.1007/s11248-016-9934-8

Stewart ZA. Xenotransplantation: The contribution of CRISPR/cas9 gene editing technology. Curr Transplant Rep. 2022; 9(4): 268-275. DOI: 10.1007/s40472-022-00380-3

Peterson L, Yacoub MH, Ayares D, Yamada K, Eisenson D, Griffith BP, et al. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol Rev. 2024; 104(3): 1409-1459. DOI: 10.1152/physrev.00041.2023

Nicolae CL, Pîrvulescu DC, Niculescu AG, Epistatu D, Mihaiescu DE, Antohi AM, et al. An up-to-date review of materials science advances in bone grafting for oral and maxillofacial pathology. Materials. 2024; 17(19): 4782. DOI: 10.3390/ma17194782

Alfayez E. Current trends and innovations in oral and maxillofacial reconstruction. Med Sci Monit. 2025; 31: e947152. DOI: 10.12659/MSM.947152

Han JL, and Entcheva E. Gene modulation with CRISPR-based tools in human iPSC-cardiomyocytes. Stem Cell Rev Rep. 2023; 19(4): 886-905. DOI: 10.1007/s12015-023-10506-4

De Masi C, Spitalieri P, Murdocca M, Novelli G, and Sangiuolo F. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: From gene editing to drug discovery. Hum Genomics. 2020; 14(1): 25. DOI: 10.1186/s40246-020-00276-2

Stojkovic M, Han D, Jeong M, Stojkovic P, and Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. Stem Cells. 2021; 39(6): 673-696. DOI: 10.1002/stem.3353

Ben Jehuda R, Shemer Y, and Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep. 2018; 14(3): 323-336. DOI: 10.1007/s12015-018-9811-3

Zhou H, Ye P, Xiong W, Duan X, Jing S, He Y, et al. Genome-scale CRISPR-Cas9 screening in stem cells: Theories, applications and challenges. Stem Cell Res Ther. 2024; 15(1): 218. DOI: 10.1186/s13287-024-03831-z

Zhang Y, Sastre D, and Wang F. CRISPR/Cas9 genome editing: A promising tool for therapeutic applications of induced pluripotent stem cells. Curr Stem Cell Res Ther. 2018; 13(4): 243-251. DOI: 10.2174/1574888X13666180214124800

Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, et al. Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem. 2012; 287(13): 10590-10601. DOI: 10.1074/jbc.M111.285874

Nasrallah A, Sulpice E, Kobaisi F, Gidrol X, and Rachidi W. CRISPR-Cas9 technology for the creation of biological avatars capable of modeling and treating pathologies: From Discovery to the latest improvements. Cells. 2022; 11(22): 3615. DOI: 10.3390/cells11223615

Ali F, Hameed A, Rehman A, Sarfraz S, Rajput NA, and Atiq M. CRISPR system discovery, history, and future perspective. OMICs‐based techniques for global food security. 2024. p. 159-170. DOI: 10.1002/9781394209156.ch8

Elumalai P, and Ezhilarasan D. Emerging applications of CRISPR/Cas9 gene editing technology in reversing drug resistance in oral squamous cell carcinoma. Oral Oncol. 2022; 134: 106100. DOI: 10.1016/j.oraloncology.2022.106100

Lima A, and Maddalo D. SEMMs: Somatically engineered mouse models. A new tool for in vivo disease modeling for basic and translational research. Front Oncol. 2021; 11: 667189. DOI: 10.3389/fonc.2021.667189

Kordbacheh F, and Farah CS. Molecular pathways and druggable targets in head and neck squamous cell carcinoma. Cancers. 2021; 13(14): 3453. DOI: 10.3390/cancers13143453

Dragomirescu AO, Băluța AM, Albu ŞD, Tănase M, Merişescu MM, Albu CC, et al. Genetic architectures and molecular interventions in craniofacial development: paving the way for advanced diagnostic and therapeutic frontiers. Rom J Oral Rehabil. 2025; 17(1): 149-161. DOI: 10.62610/RJOR.2025.1.17.16

Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med. 2016; 22(12): 1392-1401. DOI: 10.1038/nm.4238

Yadav N, Narang J, Chhillar AK, and Rana JS. CRISPR: A new paradigm of theranostics. Nanomedicine. 2021; 33: 102350. DOI: 10.1016/j.nano.2020.102350