Nano-carrier-based Delivery of CRISPR-Cas9 for Oncolytic Gene Therapy: Insights from Xenograft Models
Main Article Content
Abstract
The CRISPR-Cas9 system has revolutionized genome editing, offering unprecedented precision and efficiency in gene modification. Its potential in cancer therapy, particularly oncolytic gene therapy, has garnered significant attention, especially with the development of advanced delivery platforms. However, effective and safe in vivo delivery of CRISPR components remains a major barrier to clinical translation. This review provides a comprehensive overview of viral and non-viral nanocarrier systems for CRISPR-Cas9 delivery, with a particular focus on their application in xenograft models of cancer. The present study aimed to bridge the gap between molecular innovation and therapeutic application by evaluating the efficiency and safety of CRISPR-Cas9 delivery systems in preclinical oncology models. The mechanisms and classifications of viral vectors, including adeno-associated viruses (AAV), lentivirus, and adenovirus, were emphasized, highlighting their strengths in gene transfer efficiency, while addressing concerns over immunogenicity, genome integration, and scalability. Subsequently, non-viral nanocarriers, including lipid nanoparticles (LNPs), polymeric systems, dendrimers, and metallic nanoparticles, have emerged as safer and more customizable alternatives. Key considerations, including stability, endosomal escape, payload capacity, and tumor targeting, are evaluated, supported by findings from recent xenograft-based studies. A direct comparison between viral and non-viral systems was presented, emphasizing differences in transfection efficiency, biosafety, immunological responses, and gene-editing precision in preclinical tumor models. The clinical relevance of CRISPR-based oncolytic strategies was examined, along with their integration with other cancer therapies. Additionally, the emerging challenges of immune evasion, tumor heterogeneity, and delivery barriers were evaluated. In addition, the regulatory and ethical dimensions surrounding genome editing in cancer therapy are addressed, including long-term safety concerns, germline editing considerations, and global disparities in clinical oversight. The discussion concluded with an examination of future perspectives, highlighting strategic improvements in delivery technologies and validation pipelines. Xenograft models were proposed as a means to accelerate clinical translation.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Garcia-Robledo JE, Barrera MC, and Tobón GJ. CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Int Rev Immunol. 2020; 39(1): 11-20. DOI: 10.1080/08830185.2019.1677645
Lotfalizadeh N, Sadr S, Simab PA, Hajjafari A, Borji H, and Bayat Z. CRISPR/Cas9-mediated genome editing: In vivo review. J Lab Anim Res. 2022; 1(1): 47-51. DOI: 10.58803/jlar.v1i1.13
Kirchner M, and Schneider S. CRISPR‐Cas: from the bacterial adaptive immune system to a versatile tool for genome engineering. Angew Chem Int Ed. 2015; 54(46): 13508-13514. DOI: 10.1002/anie.201504741
Luther DC, Lee YW, Nagaraj H, Scaletti F, and Rotello VM. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert Opin Drug Deliv. 2018; 15(9): 905-913. DOI: 10.1080/17425247.2018.1517746
Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, and Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol. 2022; 10: 973326. DOI: 10.3389/fbioe.2022.973326
Nayerossadat N, Maedeh T, and Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012; 1(1): 27. DOI: 10.4103/2277-9175.98152
Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 2019; 20(21): 5491. DOI: 10.3390/ijms20215491
Taha EA, Lee J, and Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release. 2022; 342: 345-361. DOI: 10.1016/j.jconrel.2022.01.013
Behr M, Zhou J, Xu B, and Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm Sin B. 2021; 11(8): 2150-2171. DOI: 10.1016/j.apsb.2021.05.020
Liu Y, Wu W, Cai C, Zhang H, Shen H, and Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther. 2023; 8(1): 160. DOI: 10.1038/s41392-023-01419-2
Xu X, Wan T, Xin H, Li D, Pan H, Wu J, et al. Delivery of CRISPR/Cas9 for therapeutic genome editing. J Gene Med. 2019; 21(7): e3107. DOI: 10.1002/jgm.3107
Biagioni A, Laurenzana A, Margheri F, Chillà A, Fibbi G, and Del Rosso M. Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng. 2018; 12: 1-9. DOI: 10.1186/s13036-018-0127-2
Sadr S, Ahmadi Simab P, and Borji H. CRISPR-Cas9 as a Potential Cancer Therapy Agent: An Update. Res Biotechnol Environ Sci. 2023; 2(1): 12-17. DOI: 10.58803/RBES.2023.2.1.02
Johnson NM, Alvarado AF, Moffatt TN, Edavettal JM, Swaminathan TA, and Braun SE. HIV-based lentiviral vectors: Origin and sequence differences. Mol Ther Methods Clin Dev. 2021; 21: 451-465. DOI: 10.1016/j.omtm.2021.03.018
Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, et al. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther. 2023; 30(7): 936-954. DOI: 10.1038/s41417-023-00597-z
Xu CL, Ruan MZ, Mahajan VB, and Tsang SH. Viral delivery systems for CRISPR. Viruses. 2019; 11(1): 28. DOI: 10.3390/v11010028
Mengstie MA. Viral vectors for the in vivo delivery of CRISPR components: Advances and challenges. Front Bioeng Biotechnol. 2022; 10: 895713. DOI: 10.3389/fbioe.2022.895713
Chandrasekaran AP, Song M, Kim KS, and Ramakrishna S. Different methods of delivering CRISPR/Cas9 into cells. Prog Mol Biol Transl Sci. 2018; 159: 157-176. DOI: 10.1016/bs.pmbts.2018.05.001
Yang W, Yan J, Zhuang P, Ding T, Chen Y, Zhang Y, et al. Progress of delivery methods for CRISPR-Cas9. Expert Opin Drug Deliv. 2022; 19(8): 913-926. DOI: 10.1080/17425247.2022.2100342
Song M. The CRISPR/Cas9 system: Their delivery, in vivo and ex vivo applications, and clinical development by startups. Biotechnol Prog. 2017; 33(4): 1035-1045. DOI: 10.1002/btpr.2484
Wang D, Zhang F, and Gao G. CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by AAV vectors. Cell. 2020; 181(1): 136-150. DOI: 10.1016/j.cell.2020.03.023
Singh D. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies. AAPS PharmSciTech. 2024; 25(5): 129. DOI: 10.1208/s12249-024-02834-6
Nie JJ, Liu Y, Qi Y, Zhang N, Yu B, Chen DF, et al. Charge-reversal nanocomplexes-based CRISPR/Cas9 delivery system for loss-of-function oncogene editing in hepatocellular carcinoma. J Control Release. 2021; 333: 362-373. DOI: 10.1016/j.jconrel.2021.03.030
Yi K, Kong H, Lao YH, Li D, Mintz RL, Fang T, et al. Engineered nanomaterials to potentiate CRISPR/Cas9 gene editing for cancer therapy. Adv Mater. 2024; 36(13): 2300665. DOI: 10.1002/adma.202300665
Lin YQ, Feng KK, Lu JY, Le JQ, Li WL, Zhang BC, et al. CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery. J Control Release. 2023; 361: 727-749. DOI: 10.1016/j.jconrel.2023.08.028
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, et al. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci. 2022; 10(24): 6862-6892. DOI: 10.1039/D2BM01001A
Masarwy R, Stotsky-Oterin L, Elisha A, Hazan-Halevy I, and Peer D. Delivery of nucleic acid based genome editing platforms via lipid nanoparticles: Clinical applications. Adv Drug Deliv Rev. 2024; 211: 115359. DOI: 10.1016/j.addr.2024.115359
Li X, Qi J, Wang J, Hu W, Zhou W, Wang Y, et al. Nanoparticle technology for mRNA: Delivery strategy, clinical application and developmental landscape. Theranostics. 2024; 14(2): 738-758. DOI: 10.7150/thno.84291
Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, et al. Recent advances in lipid nanoparticles for delivery of mRNA. Pharmaceutics. 2022; 14(12): 2682. DOI: 10.3390/pharmaceutics14122682
Kamaly N, Yameen B, Wu J, and Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016; 116(4): 2602-2663. DOI: 10.1021/acs.chemrev.5b00346
Kumar AP, Depan D, Tomer NS, and Singh RP. Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog Polym Sci. 2009; 34(6): 479-515. DOI: 10.1016/j.progpolymsci.2009.01.002
Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, et al. Polymeric nanoparticles for drug delivery. Chem Rev. 2024; 124(9): 5505-5616. DOI: 10.1021/acs.chemrev.3c00705
Banik BL, Fattahi P, and Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016; 8(2): 271-299. DOI: 10.1002/wnan.1364
Rai R, Alwani S, and Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers. 2019; 11(4): 745. DOI: 10.3390/polym11040745
Aljabali AA, and Obeid MA. Inorganic-organic nanomaterials for therapeutics and molecular imaging applications. Nanosci Nanotechnol Asia. 2020; 10(6): 748-765. DOI: 10.2174/2210681209666190807145229
Chen S, Hao X, Liang X, Zhang Q, Zhang C, Zhou G, et al. Inorganic nanomaterials as carriers for drug delivery. J Biomed Nanotechnol. 2016; 12(1): 1-27. DOI: 10.1166/jbn.2016.2122
Ali I, Mukhtar SD, Lone MN, Ali HS, and Aboul-Enein HY. Recent advances in mesoporous silica and gold based nanovectors in anticancer drug delivery system. Curr Org Chem. 2017; 21(23): 2400-2415. DOI: 10.2174/1385272820666161025161853
Palaz F, Ozsoz M, Zarrinpar A, and Sahin I. CRISPR in targeted therapy and adoptive T cell immunotherapy for hepatocellular carcinoma. J Hepatocell Carcinoma. 2024; 11: 975-995. DOI: 10.2147/JHC.S456683
Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, et al. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon. 2024; 10(18): e38165. DOI: 10.1016/j.heliyon.2024.e38165
Fana M, Gallien J, Srinageshwar B, Dunbar GL, and Rossignol J. PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: A systematic review. Int J Nanomedicine. 2020; 15: 2789-2808. DOI: 10.2147/IJN.S243155
Luo R, Le H, Wu Q, and Gong C. Nanoplatform‐based in vivo gene delivery systems for cancer therapy. Small. 2024; 20(30): 2312153. DOI: 10.1002/smll.202312153
Taghdiri M, and Mussolino C. Viral and non-viral systems to deliver gene therapeutics to clinical targets. Int J Mol Sci. 2024; 25(13): 7333. DOI: 10.3390/ijms25137333
Dogbey DM, Torres VE, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, et al. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res. 2023; 13(11): 2719-2738. DOI: 10.1007/s13346-023-01362-3
Chen Q, Yu T, Gong J, and Shan H. Advanced nanomedicine delivery systems for cardiovascular diseases: Viral and non-viral strategies in targeted therapy. Molecules. 2025; 30(4): 962. DOI: 10.3390/molecules30040962
Mahato M, Jayandharan GR, and Vemula PK. Viral-and non-viral-based hybrid vectors for gene therapy. In: Jayandharan G. (ed). Gene and Cell Therapy: Biology and Applications. Springer, Singapore. 2018: 111-130. DOI: 10.1007/978-981-13-0481-1_4
Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, and Wang JC. Non-viral vectors for RNA delivery. J Control Release. 2022; 342: 241-279. DOI: 10.1016/j.jconrel.2022.01.008
Zong Y, Lin Y, Wei T, and Cheng Q. Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy. Adv Mater. 2023; 35(51): 2303261. DOI: 10.1002/adma.202303261
Zu H and Gao D. Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J. 2021; 23(4): 78. DOI: 10.1208/s12248-021-00608-7
Ren S, Wang M, Wang C, Wang Y, Sun C, Zeng Z, et al. Application of non-viral vectors in drug delivery and gene therapy. Polymers. 2021; 13(19): 3307. DOI: 10.3390/polym13193307
Suoranta T, Laham-Karam N, and Ylä-Herttuala S. Strategies to improve safety profile of AAV vectors. Front Mol Med. 2022; 2: 1054069. DOI: 10.3389/fmmed.2022.1054069
Yoo YJ, Lee CH, Park SH, and Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release. 2022; 343: 564-583. DOI: 10.1016/j.jconrel.2022.01.047
Vats S, Ballesteros C, Hung S, Sparapani S, Wong K, Haruna J, et al. An overview of gene editing modalities and related non-clinical testing considerations. Int J Toxicol. 2023; 42(3): 207-218. DOI: 10.1177/10915818231153996
Sun X, Tian T, Lian Y, and Cui Z. Current advances in viral nanoparticles for biomedicine. ACS Nano. 2024; 18(50): 33827-33863. DOI: 10.1021/acsnano.4c13146
Song Z, Tao Y, Liu Y, and Li J. Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: A focus on viral vectors and extracellular vesicles. Front Immunol. 2024; 15: 1444437. DOI: 10.3389/fimmu.2024.1444437
Chira S, Nutu A, Isacescu E, Bica C, Pop L, Ciocan C, et al. Genome editing approaches with CRISPR/Cas9 for cancer treatment: Critical appraisal of preclinical and clinical utility, challenges, and future research. Cells. 2022; 11(18): 2781. DOI: 10.3390/cells11182781
Uddin F, Rudin CM, and Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020; 10: 1387. DOI: 10.3389/fonc.2020.01387
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, et al. Evolution of molecular targeted cancer therapy: Mechanisms of drug resistance and novel opportunities identified by CRISPR-Cas9 screening. Front Oncol. 2022; 12: 755053. DOI: 10.3389/fonc.2022.755053
Chen C, Wang Z, and Qin Y. CRISPR/Cas9 system: Recent applications in immuno-oncology and cancer immunotherapy. Exp Hematol Oncol. 2023; 12(1): 95. DOI: 10.1186/s40164-023-00457-4
Mollanoori H, Shahraki H, Rahmati Y, and Teimourian S. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Hum Immunol. 2018; 79(12): 876-882. DOI: 10.1016/j.humimm.2018.09.007
Razeghian E, Nasution MK, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, et al. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther. 2021; 12: 1-7. DOI: 10.1186/s13287-021-02510-7
Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017; 27(1): 154-157. DOI: 10.1038/cr.2016.142
Wei W, Chen ZN, and Wang K. CRISPR/Cas9: A powerful strategy to improve CAR-T cell persistence. Int J Mol Sci. 2023; 24(15): 12317. DOI: 10.3390/ijms241512317
Hu W, Zi Z, Jin Y, Li G, Shao K, Cai Q, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother. 2019; 68: 365-377. DOI: 10.1007/s00262-018-2281-2
Vakulskas CA, and Behlke MA. Evaluation and reduction of CRISPR off-target cleavage events. Nucleic Acid Ther. 2019; 29(4): 167-174. DOI: 10.1089/nat.2019.0790
Newman A, Starrs L, and Burgio G. Cas9 cuts and consequences; Detecting, predicting, and mitigating CRISPR/Cas9 on‐and off‐target damage. Bioessays. 2020; 42(9): 2000047. DOI: 10.1002/bies.202000047
Tycko J, Wainberg M, Marinov GK, Ursu O, Hess GT, Ego BK, et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat Commun. 2019; 10(1): 4063. DOI: 10.1038/s41467-019-11955-7
Zhang S, Shen J, Li D, and Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021; 11(2): 614-648. DOI: 10.7150/thno.47007
Amirkhanov RN, and Stepanov GA. Systems of delivery of CRISPR/Cas9 ribonucleoprotein complexes for genome editing. Russ J Bioorg Chem. 2019; 45: 431-437. DOI: 10.1134/S1068162019060025
DeWitt MA, Corn JE, and Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods. 2017; 121: 9-15. DOI: 10.1016/j.ymeth.2017.04.003
Crudele JM and Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun. 2018; 9(1): 3497. DOI: 10.1038/s41467-018-05843-9
Mehta A, and Merkel OM. Immunogenicity of Cas9 protein. J Pharm Sci. 2020; 109(1): 62-67. DOI: 10.1016/j.xphs.2019.10.003
Seow Y, and Wood MJ. Biological gene delivery vehicles: Beyond viral vectors. Mol Ther. 2009; 17(5): 767-777. DOI: 10.1038/mt.2009.41
Yi W, Hu S, Qian X, Yan W, and Li Y. Synthetic biology‐based engineering cells for drug delivery. Exploration. 2025; 5(2): 2381-2395. DOI: 10.1002/EXP.20240095
Youssef E, Fletcher B, and Palmer D. Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology. Front Med. 2025; 11: 1527600. DOI: 10.3389/fmed.2024.1527600
de Almeida NA, Ribeiro CR, Raposo JV, and de Paula VS. Immunotherapy and gene therapy for oncoviruses infections: A review. Viruses. 2021; 13(5): 822. DOI: 10.3390/v13050822
Lin D, Shen Y, and Liang T. Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct Target Ther. 2023; 8(1): 156. DOI: 10.1038/s41392-023-01407-6
Harrington K, Freeman DJ, Kelly B, Harper J, and Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019; 18(9): 689-706. DOI: 10.1038/s41573-019-0029-0
Zhang D, Hussain A, Manghwar H, Xie K, Xie S, Zhao S, et al. Genome editing with the CRISPR‐Cas system: An art, ethics and global regulatory perspective. Plant Biotechnol J. 2020; 18(8): 1651-1669. DOI: 10.1111/pbi.13383
Asquer A, and Krachkovskaya I. Uncertainty, institutions and regulatory responses to emerging technologies: CRISPR Gene editing in the US and the EU (2012-2019). Regul Gov. 2021; 15(4): 1111-1127. DOI: 10.1111/rego.12335
Souto EB, Blanco-Llamero C, Krambeck K, Kiran NS, Yashaswini C, Postwala H, et al. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomater. 2024; 177: 1-18. DOI: 10.1016/j.actbio.2024.04.010
Mulvihill JJ, Capps B, Joly Y, Lysaght T, Zwart HA, Chadwick R, et al. Ethical issues of CRISPR technology and gene editing through the lens of solidarity. Br Med Bull. 2017; 122(1): 17-29. DOI: 10.1093/bmb/ldx002
Evans JH. Setting ethical limits on human gene editing after the fall of the somatic/germline barrier. Proc Natl Acad Sci USA. 2021; 118(22): e2004837117. DOI: 10.1073/pnas.2004837117
Sadr S, Ahmadi Simab P, Niazi M, Yousefsani Z, Lotfalizadeh N, Hajjafari A, et al. Anti-inflammatory and immunomodulatory effects of mesenchymal stem cell therapy on parasitic drug resistance. Expert Rev Anti Infect Ther. 2024; 22(6): 435-451. DOI: 10.1080/14787210.2024.2360684
Sanchez-Guijo F, Vives J, Ruggeri A, Chabannon C, Corbacioglu S, Dolstra H, et al. Current challenges in cell and gene therapy: A joint view from the European committee of the International society for cell and gene therapy (ISCT) and the European society for blood and marrow transplantation (EBMT). Cytotherapy. 2024; 26(7): 681-685. DOI: 10.1016/j.jcyt.2024.02.007