Roles of Artificial Intelligence in Enhancing Diagnostic Pathology and Surgical Outcomes in Laboratory Animals: A Systematic Review
Main Article Content
Abstract
Recent advances in artificial intelligence (AI) have opened new horizons in medical sciences, especially in pathology and surgery. Although AI can enhance diagnostic accuracy and surgical outcomes, its widespread clinical use faces challenges such as validation, interpretability, and ethical and legal issues. The present study aimed to examine recent developments in AI across pathology, including automated recognition of pathological images and surgery (robotic surgical assistant systems and predictive outcome analysis). The present study analyzed current challenges in implementing AI and provided a perspective on how it can become a reliable tool to improve the quality of patient care and treatment outcomes. An initial and extensive search was conducted across reputable scientific databases, including Google Scholar, PubMed, and Scopus, using relevant keywords. Within the clinical pathology section, this review provided a comprehensive examination of how deep learning algorithms and image processing are automating and enhancing data analysis in cytology, hematology, histopathology, and digital pathology. The ability of AI to discover nuanced patterns in vast datasets, greatly improve diagnostic accuracy, and speed up reporting are all impressive capabilities. One of these challenges is the need for large, standardized datasets for algorithm training. Other challenges include clinical validation, ethical concerns, and early costs. In conclusion, this review anticipates that the integration of AI into clinical pathology and surgical workflows promises enhanced quality of care for laboratory animals alongside more accurate and reliable insights.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Singh AP, Saxena R, Saxena S, and Maurya NK. Artificial intelligence revolution in healthcare: Transforming diagnosis, treatment, and patient care. Asian J Adv Res. 2024; 7(1): 241-263. Available at: https://hal.science/hal-05104565/
Bera K, Schalper KA, Rimm DL, Velcheti V, and Madabhushi A. Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019; 16(11): 703-715. DOI: 10.1038/s41571-019-0252-y
Shafi S, and Parwani AV. Artificial intelligence in diagnostic pathology. Diagn Pathol. 2023; 18(1): 109. DOI: 10.1186/s13000-023-01375-z
Acs B, Rantalainen M, and Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med. 2020; 288(1): 62-81. DOI: 10.1111/joim.13030
Knoblaugh SE, Hohl TM, and La Perle KMD. Pathology principles and practices for analysis of animal models. ILAR J. 2018; 59(1): 40-50. DOI: 10.1093/ilar/ilz001
Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, and Kather JN. Deep learning in cancer pathology: A new generation of clinical biomarkers. Br J Cancer. 2021; 124(4): 686-696. DOI: 10.1038/s41416-020-01122-x
Linstädt J, Thöne-Reineke C, and Merle R. Animal-based welfare indicators for dairy cows and their validity and practicality: A systematic review of the existing literature. Front Vet Sci. 2024; 11: 1429097. DOI: 10.3389/fvets.2024.1429097
Mezei T, Kolcsár M, Joó A, and Gurzu S. Image analysis in histopathology and cytopathology: From early days to current perspectives. J Imaging. 2024; 10(10): 252. DOI: 10.3390/jimaging10100252
Khatab Z, Hanna K, Rofaeil A, Wang C, Maung R, and Yousef GM. Pathologist workload, burnout, and wellness: Connecting the dots. Crit Rev Clin Lab Sci. 2024; 61(4): 254-274. DOI: 10.1080/10408363.2023.2285284
Higginson JA, Breik O, Thompson AH, Ashrafian H, Hardman JC, Takats Z, et al. Diagnostic accuracy of intraoperative margin assessment techniques in surgery for head and neck squamous cell carcinoma: A meta-analysis. Oral Oncol. 2023; 142: 106419. DOI: 10.1016/j.oraloncology.2023.106419
Heidkamp J, Scholte M, Rosman C, Manohar S, Fütterer JJ, and Rovers MM. Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review. Int J Cancer. 2021; 149(3): 635-645. DOI: 10.1002/ijc.33570
Ogut E. Artificial intelligence in clinical medicine: Challenges across diagnostic imaging, clinical decision support, surgery, pathology, and drug discovery. Clin Pract. 2025; 15(9): 169. DOI: 10.3390/clinpract15090169
Tian M, Shen Z, Wu X, Wei K, and Liu Y. The application of artificial intelligence in medical diagnostics: A new frontier. Acad J Sci Technol. 2023; 8(2): 57-61. DOI: 10.54097/ajst.v8i2.14945
Ahmad Z, Rahim S, Zubair M, and Abdul-Ghafar J. Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: Present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagn Pathol. 2021; 16(1): 24. DOI: 10.1186/s13000-021-01085-4
Zuraw A, and Aeffner F. Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. Vet Pathol. 2022; 59(1): 6-25. DOI: 10.1177/03009858211040484
Bahadir CD, Omar M, Rosenthal J, Marchionni L, Liechty B, Pisapia DJ, et al. Artificial intelligence applications in histopathology. Nat Rev Electr Eng. 2024; 1(2): 93-108. DOI: 10.1038/s44287-023-00012-7
Varghese C, Harrison EM, O'Grady G, and Topol EJ. Artificial intelligence in surgery. Nat Med. 2024; 30(5): 1257-68. DOI: 10.1038/s41591-024-02970-3
Gorman BG, Lifson MA, and Vidal NY. Artificial intelligence and frozen section histopathology: A systematic review. J Cutan Pathol. 2023; 50(9): 852-859. DOI: 10.1111/cup.14481
Chan HP, Samala RK, Hadjiiski LM, and Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol. 2020; 1213: 3-21. DOI: 10.1007/978-3-030-33128-3_1
Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, and Khan MK. Medical image analysis using convolutional neural networks: A review. J Med Syst. 2018; 42(11): 226. DOI: 10.1007/s10916-018-1088-1
Morrow E, Zidaru T, Ross F, Mason C, Patel KD, Ream M, et al. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Front Psychol. 2022; 13: 971044. DOI: 10.3389/fpsyg.2022.971044
Zain Z, Almadhoun M, Alsadoun L, and Bokhari SFH. Leveraging artificial intelligence and machine learning to optimize enhanced recovery after surgery (ERAS) Protocols. Cureus. 2024; 16(3): e56668. DOI: 10.7759/cureus.56668
Bouhali O, Bensmail H, Sheharyar A, David F, and Johnson JP. A review of radiomics and artificial intelligence and their application in veterinary diagnostic imaging. Vet Sci. 2022; 9(11): 620. DOI: 10.3390/vetsci9110620
Hayes JM, Hayes MR, Friedrichs KR, and Simmons HA. Development of criteria to optimize manual smear review of automated complete blood counts using a machine learning model. Vet Clin Pathol. 2024: 10.1111/vcp.13400. DOI: 10.1111/vcp.13400
De Niz M, Pereira SS, Kirchenbuechler D, Lemgruber L, and Arvanitis C. Artificial intelligence-powered microscopy: Transforming the landscape of parasitology. J Microsc. 2025: 1-50. DOI: 10.1111/jmi.13433
Kobara YM, Akpan IJ, and Nam AD, AlMukthar FH, Peter M. Artificial intelligence and data science methods for automatic detection of white blood cells in images. J Imaging Inform Med. 2025. DOI: 10.1007/s10278-025-01538-y
Mann M, Kumar C, Zeng WF, and Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021; 12(8): 759-770. DOI: 10.1016/j.cels.2021.06.006
Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, and Forghani B. Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J. 2019; 17: 995-1008. DOI: 10.1016/j.csbj.2019.07.001
Cao H, Oghenemaro EF, Latypova A, Abosaoda MK, Zaman GS, and Devi A. Advancing clinical biochemistry: Addressing gaps and driving future innovations. Front Med (Lausanne). 2025; 12: 1521126. DOI: 10.3389/fmed.2025.1521126
Fadhail S. Article review: Advancements in veterinary histopathology: Linking tissue pathology to clinical outcomes. Wasit J Pure Sci. 2025; 4(1): 260-269. DOI: 10.31185/wjps.687
Fotouh A. Digitalization of veterinary pathology in the era of artificial intelligence: A comprehensive review. Benha Vet Med J. 2025; 49(1): 100-110. DOI: 10.21608/bvmj.2025.416499.1980
Amer MM, and Amer AM. Artificial intelligence: Current and future role in veterinary and public medicine. Egypt J Vet Sci. 2025; 56(11): 2761-2772. DOI: 10.21608/ejvs.2024.293158.2126
Ezanno P, Picault S, Beaunée G, Bailly X, Muñoz F, Duboz R, et al. Research perspectives on animal health in the era of artificial intelligence. Vet Res. 2021; 52(1): 40. DOI: 10.1186/s13567-021-00902-4
Srivastava V, Kumar R, Wani MY, Robinson K, and Ahmad A. Role of artificial intelligence in early diagnosis and treatment of infectious diseases. Infect Dis. 2025; 57(1): 1-26. DOI: 10.1080/23744235.2024.2425712
Sadr S, Santucciu C, Chisu V, Lotfalizadeh N, Nazemian S, Esfandiari N, et al. Pandemic prevention paradigms: Understanding global health governance. Public Health Chall. 2025; 4(2): e70051. DOI: 10.1002/puh2.70051
Singam A. Revolutionizing patient care: A comprehensive review of artificial intelligence applications in anesthesia. Cureus. 2023; 15(12): e49887. DOI: 10.7759/cureus.49887
Dabbagh A, and Sabouri AS. The role of artificial intelligence in medicine with a special focus on anesthesiology and perioperative care. Anesthesiol Clin. 2025; 43(3): 389-403. DOI: 10.1016/j.anclin.2025.04.002
Ahmed Z, Mohamed K, Zeeshan S, and Dong XQ. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database. 2020; 2020: baaa010. DOI: 10.1093/database/baaa010
Leivaditis V, Maniatopoulos AA, Lausberg H, Mulita F, Papatriantafyllou A, Liolis E, et al. Artificial intelligence in thoracic surgery: A review bridging innovation and clinical practice for the next Generation of surgical care. J Clin Med. 2025; 14(8): 2729. DOI: 10.3390/jcm14082729
Tiwari A, Mishra S, and Kuo TR. Current AI technologies in cancer diagnostics and treatment. Mol Cancer. 2025; 24(1): 159. DOI: 10.1186/s12943-025-02369-9
Delgado-López PD, Cárdenas Montes M, Troya García J, Ocaña-Tienda B, Cepeda S, Martínez Martínez R, et al. Artificial intelligence in neuro-oncology: Methodological bases, practical applications and ethical and regulatory issues. Clin Transl Oncol. 2025; 27(11): 4117-4130. DOI: 10.1007/s12094-025-03948-4
Pedük Ş. Mapping the future of early breast cancer diagnosis: A bibliometric analysis of AI innovations. Discov Oncol. 2025; 16(1): 1870. DOI: 10.1007/s12672-025-03495-y
Küchler L, Posthaus C, Jäger K, Guscetti F, van der Weyden L, von Bomhard W, et al. Artificial intelligence to predict the BRAF V595E mutation in canine urinary bladder urothelial carcinomas. Animals. 2023; 13(15): 2404. DOI: 10.3390/ani13152404
Duggirala HJ, and Johnson JL, Tadesse DA, Hsu CH, Norris AL, Faust J, et al. Artificial intelligence and machine learning in veterinary medicine: A regulatory perspective on current initiatives and future prospects. Am J Vet Res. 2025; 86(S1): S16-S21. DOI: 10.2460/ajvr.24.09.0285
Basran PS, and Appleby RB. What's in the box? A toolbox for safe deployment of artificial intelligence in veterinary medicine. J Am Vet Med Assoc. 2024; 262(8): 1090-1098. DOI: 10.2460/javma.24.01.0027
Chadebecq F, Vasconcelos F, Mazomenos E, and Stoyanov D. Computer vision in the surgical operating room. Visc Med. 2020; 36(6): 456-462. DOI: 10.1159/000511934
Birkhoff DC, van Dalen A, and Schijven MP. A review on the current applications of artificial intelligence in the operating room. Surg Innov. 2021; 28(5): 611-619. DOI: 10.1177/1553350621996961
Ward TM, Mascagni P, Ban Y, Rosman G, Padoy N, Meireles O, et al. Computer vision in surgery. Surgery. 2021; 169(5): 1253-1256. DOI: 10.1016/j.surg.2020.10.039
Kitaguchi D, Takeshita N, Hasegawa H, and Ito M. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann Gastroenterol Surg. 2022; 6(1): 29-36. DOI: 10.1002/ags3.12513
Choksi S, Szot S, Zang C, Yarali K, Cao Y, Ahmad F, et al. Bringing Artificial intelligence to the operating room: Edge computing for real-time surgical phase recognition. Surg Endosc. 2023; 37(11): 8778-8784. DOI: 10.1007/s00464-023-10322-4
Taha A, Ochs V, Kayhan LN, Enodien B, Frey DM, Krähenbühl L, et al. Advancements of artificial intelligence in liver-associated diseases and surgery. Medicina. 2022; 58(4): 459. DOI: 10.3390/medicina58040459
Burti S, Banzato T, Coghlan S, Wodzinski M, Bendazzoli M, and Zotti A. Artificial intelligence in veterinary diagnostic imaging: Perspectives and limitations. Res Vet Sci. 2024; 175: 105317. DOI: 10.1016/j.rvsc.2024.105317
Akinsulie OC, Idris I, Aliyu VA, Shahzad S, Banwo OG, Ogunleye SC, et al. The potential application of artificial intelligence in veterinary clinical practice and biomedical research. Front Vet Sci. 2024; 11: 1347550. DOI: 10.3389/fvets.2024.1347550
Yetgin A. Revolutionizing multi‐omics analysis with artificial intelligence and data processing. Quant Biol. 2025; 13(3): e70002. DOI: 10.1002/qub2.70002
Zong Z, and Guan Y. AI-driven intelligent data analytics and predictive analysis in Industry 4.0: Transforming knowledge, innovation, and efficiency. J Knowl Econ. 2025; 16(1): 864-903. DOI: 10.1007/s13132-024-02001-z
Jayakumar S, Sounderajah V, Normahani P, Harling L, Markar SR, Ashrafian H, et al. Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study. NPJ Digit Med. 2022; 5(1): 11. DOI: 10.1038/s41746-021-00544-y
Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020; 368: m689. DOI: 10.1136/bmj.m689
Gong Y, Liu G, Xue Y, Li R, and Meng L. A survey on dataset quality in machine learning. Inf Softw Technol. 2023;162:107268. DOI: 10.1016/j.infsof.2023.107268
Zemplényi A, Tachkov K, Balkanyi L, Németh B, Petykó ZI, Petrova G, et al. Recommendations to overcome barriers to the use of artificial intelligence-driven evidence in health technology assessment. Front Public Health. 2023; 11: 1088121. DOI: 10.3389/fpubh.2023.1088121
Ahmed MI, Spooner B, Isherwood J, Lane M, Orrock E, and Dennison A. A systematic review of the barriers to the implementation of artificial intelligence in healthcare. Cureus. 2023; 15(10): e46454. DOI: 10.7759/cureus.46454
He J, Baxter SL, Xu J, Xu J, Zhou X, and Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019; 25(1): 30-36. DOI: 10.1038/s41591-018-0307-0
Yin J, Ngiam KY, and Teo HH. Role of artificial intelligence applications in real-life clinical practice: systematic review. J Med Internet Res. 2021; 23(4): e25759. DOI: 10.2196/25759