Avicenna's Canon of Medicine and Tuberculosis: A Review on Herbal Medicine in Animal Model Research

Main Article Content

Zakiyeh Sakhavat Nia
Mehdi Sobhani
Zahra Sobhani

Abstract

Abstract


Tuberculosis (TB) remains a major global health challenge, highlighting the need for new and complementary therapeutic methods and strategies. The present study aimed to provide a comprehensive review of medicinal plants recommended by the renowned Persian physician Avicenna (Ibn Sina) for TB treatment, focusing on their phytochemical compounds and mechanisms of action. The present study combined a historical analysis of Avicenna's Canon of Medicine to identify medicinal plants used for tuberculosis with a systematic literature review (2000-2024) to evaluate their modern pharmacological evidence. The study targeted antimycobacterial, immunomodulatory, and symptom-relief activities using databases including PubMed, Scopus, and Science Direct. The current findings indicated that several plants, including Artemisia absinthium L., Artemisia vulgaris L., Glycyrrhiza glabra L., Hyssopus officinalis L., Myrtus communis L., Thymus vulgaris L., Rosa damascena Mill., Adiantum capillus-veneris L., Achillea millefolium L., Foeniculum vulgare Mill., Polygonum aviculare L., Phoenix dactylifera L., and Teucrium polium L., have multifaceted approaches against TB through potent anti-inflammatory, antioxidant, immunomodulatory, and direct antimycobacterial effects. Bioactive compounds included in these plants, such as phenolic acids, flavonoids, and terpenoids, are identified as key contributors that reduce oxidative stress, modulate immune responses, inhibit inflammatory mediators such as Interleukin-6, Interleukin-1β, and Tumor Necrosis Factor-alpha, and directly suppress Mycobacterium tuberculosis growth. Furthermore, these compounds help mitigate pulmonary damage and enhance host immune defenses. By integrating Avicenna's traditional knowledge with contemporary pharmacological evidence, the potential of these plants as complementary therapeutic agents for TB was noted.

Article Details

How to Cite
Sakhavat Nia, Z., Sobhani, M., & Sobhani, Z. (2025). Avicenna’s Canon of Medicine and Tuberculosis: A Review on Herbal Medicine in Animal Model Research . Journal of Lab Animal Research, 4(5), 43–56. https://doi.org/10.58803/jlar.v4i5.83
Section
Review Article
Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Vasiliu A, Martinez L, Gupta RK, Hamada Y, Ness T, Kay A, et al. Tuberculosis prevention: current strategies and future directions. Clin Microbiol Infect. 2024; 30(9): 1123-1130. DOI: 10.1016/j.cmi.2023.10.023

Saelens JW, Sweeney MI, Viswanathan G, Xet-Mull AM, Smith KLJ, Sisk DM, et al. An ancestral mycobacterial effector promotes dissemination of infection. Cell. 2022; 185(24): 4507-4525. DOI: 10.1016/j.cell.2022.10.019

Wei X, Yue L, Zhao B, Jiang N, Lei H, and Zhai X. Recent advances and challenges of revolutionizing drug-resistant tuberculosis treatment. Eur J Med Chem. 2024; 116785. DOI: 10.1016/j.ejmech.2024.116785

Rana HK, Singh AK, Kumar R, and Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. Naunyn Schmiedebergs Arch Pharmacol. 2024; 397(3): 1251-1273. DOI: 10.1007/s00210-023-02679-z

Raj R, Tripathi AK, Saranya P, Pal RS, Singh K, Jain D, et al. A review of molecular investigations on traditional chinese medicinal plant-based therapies in multidrug-resistant tuberculosis. Pharmacol Res Mod Chin Med. 2024; 100521. DOI: 10.1016/j.prmcm.2024.100521

Sobhani Z, Reza Nami S, Ahmad Emami S, Sahebkar A, and Javadi B. Medicinal plants targeting cardiovascular diseases in view of Avicenna. Curr Pharm Des. 2017; 23(17): 2428-2443. DOI: 10.2174/1381612823666170215104101

Ghaffari F, Taheri M, Meyari A, Karimi Y, and Naseri M. Avicenna and clinical experiences in Canon of Medicine. J Med Life. 2022; 15(2): 168-178. DOI: 10.25122/jml-2021-0246

Liebenberg D, Gordhan BG, and Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infection Microbiol. 2022; 23; 12: 943545. DOI: 10.3389/fcimb.2022.943545

Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, et al. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol. 2023; 13: 1146571. DOI: 10.3389/fcimb.2023.1146571

World health organization (WHO). World health organization global tuberculosis report 2024. Geneva: World Health Organization; 2024. Available at: https://iris.who.int/server/api/core/bitstreams/7292c91e-ffb0-4cef-ac39-0200f06961ea/content

Cadena AM, Fortune SM, and Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol. 2017; 17(11): 691-702. DOI: 10.1038/nri.2017.69

Chee CBE, Reves R, Zhang Y, and Belknap R. Latent tuberculosis infection: Opportunities and challenges. Respirology. 2018; 23(10): 893-900. DOI: 10.1111/resp.13346

Natarajan A, Beena PM, Devnikar AV, and Mali S. A systemic review on tuberculosis. Indian J Tuberc. 2020; 67(3): 295-311. DOI: 10.1016/j.ijtb.2020.02.005

Chai Q, Lu Z, and Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci. 2020; 77(10): 1859-1878. DOI: 10.1007/s00018-019-03353-5

de Martino M, Lodi L, Galli L, and Chiappini E. Immune response to Mycobacterium tuberculosis: A narrative review. Front Pediatr. 2019; 7: 350. DOI: 10.3389/fped.2019.00350

Alarcón V, Alarcón E, Figueroa C, and Mendoza-Ticona A. Tuberculosis in Peru: epidemiological situation, progress and challenges for its control. Rev Peru Med Exp Salud Publica. 2017; 34(2): 299-310. DOI: 10.17843/rpmesp.2017.342.2384

Flynn JL and Chan J. Immune cell interactions in tuberculosis. Cell. 2022; 185(25): 4682-4702. DOI: 10.1016/j.cell.2022.10.025

Hamada Y, Getahun H, Tadesse BT, and Ford N. HIV-associated tuberculosis. Int J STD AIDS. 2021; 32(9): 780-790. DOI: 10.1177/0956462421992257

Ferraris DM, Miggiano R, Rossi F, and Rizzi M. Mycobacterium tuberculosis molecular determinants of infection, survival strategies, and vulnerable targets. Pathogens. 2018; 7(1): 17. DOI: 10.3390/pathogens7010017

Goossens SN, Sampson SL, and Van Rie A. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev. 2020; 34(1): e00141-20. DOI: 10.1128/CMR.00141-20

Godfrey MS and Friedman LN. Tuberculosis and biologic therapies: Anti-tumor necrosis Factor-α and beyond. Clin Chest Med. 2019; 40(4): 721-739. DOI: 10.1016/j.ccm.2019.07.003

Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, Makar KW, et al. Targeting innate immunity for tuberculosis vaccination. J Clin Invest. 2020; 129(9): 3482-3491. DOI: 10.1172/JCI128877

Chai Q, Wang L, Liu CH, and Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol. 2020; 17(9): 901-913. DOI: 10.1038/s41423-020-0502-z

Sinigaglia A, Peta E, Riccetti S, Venkateswaran S, Manganelli R, and Barzon L. Tuberculosis-associated micrornas: From pathogenesis to disease biomarkers. Cells. 2020; 9(10): 2160. DOI: 10.3390/cells9102160

Sina I. Al-Qanun fi al-Tibb. 1st ed. Beirut: Dar al-Kutub al-Ilmiyah; 2005.

Abdolahinia A, Naseri M, Tahmasbi S, Adimi P, Sadr M, and Velayati AA. Ideal lifestyle to have healthy lungs: Persian medicine viewpoint. Tradit Integr Med. 2022; 7(1): 150-158. DOI: 10.18502/tim.v7i1.9071

Szopa A, Pajor J, Klin P, Rzepiela A, Elansary HO, Al-Mana FA, et al. Artemisia absinthium L.-Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants. 2020; 9(9): 1063. DOI: 10.3390/plants9091063

Hussain M, Raja NI, Akram A, Iftikhar A, Ashfaq D, Yasmeen F, et al. A status review on the pharmacological implications of Artemisia absinthium: A critically endangered plant. Asian Pac J Trop Dis. 2017; 7(3): 185-192. DOI: 10.12980/apjtd.7.2017D6-385

Nigam M, Atanassova M, Mishra AP, Pezzani R, Devkota HP, Plygun S, et al. Bioactive compounds and health benefits of Artemisia species. Nat Prod Commun. 2019; 14(7): 1934578X19850354. DOI: 10.1177/1934578X19850354

Anibogwu R, Jesus KD, Pradhan S, Pashikanti S, Mateen S, and Sharma K. Extraction, isolation and characterization of bioactive compounds from Artemisia and their biological significance: A review. Molecules. 2021; 26(22): 6995. DOI: 10.3390/molecules26226995

Batiha GE, Olatunde A, El-Mleeh A, Hetta HF, Al-Rejaie S, Alghamdi S, et al. Bioactive compounds, pharmacological actions, and pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics. 2020; 9(6): 353. DOI: 10.3390/antibiotics9060353

Amrollahi H, Nazari H, Parvini S, Nazari N, and Mohammadi A. Anti-inflammatory and analgesic activities of Artemisia absinthium and chemical composition of its essential oil. Int J Pharm Sci Rev Res. 2014; 38: 237-244.

Neagu E, Paun G, Albu C, Apreutesei OT, and Radu GL. In vitro assessment of the antidiabetic and anti-inflammatory potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum extracts processed using membrane technologies. Molecules. 2023; 28(20): 7156. DOI: 10.3390/molecules28207156

Craciunescu O, Constantin D, Gaspar A, Toma L, Utoiu E, and Moldovan L. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem Cent J. 2012; 6: 97. DOI: 10.1186/1752-153X-6-97

Amat N, Upur H, and Blažeković B. In vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice. J Ethnopharmacol. 2010; 131(2): 478-484. DOI: 10.1016/j.jep.2010.07.023

Ikram M, Shafi N, Mir I, Do M, Nguyen P, and Le Quesne P. 24ζ-Ethylcholesta-7, 22-Dien-3β-ol: A possibly antipyretic constituent of Artemisia absinthium. Planta Med. 1987; 53(04): 389-389. DOI: 10.1055/s-2006-962748

Bhat MM, Ansari AP, Ahmad A, Qayoom I, and Reshi BM. Antipyretic activity of the hydro-alcoholic extract of Artemisia absinthium L. as a standalone and as an adjuvant with barley water against yeast-induced pyrexia in albino Wistar rats. J Complement Integr Med. 2023. DOI: 10.1515/jcim-2023-0307

Hojageldiyev T, Bolmammedov Y, and Gurbanaliyev S. Antimycobacterial activity of ethanolic extract of Artemisia absinthium L. World Sci News. 2019; 119: 224-230.

Lee JK. Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated raw 264.7 murine macrophages. Arch Pharm Res. 2011; 34(4): 671-679. DOI: 10.1007/s12272-011-0418-3

Abiri R, Silva ALM, de Mesquita LSS, de Mesquita JWC, Atabaki N, de Almeida EB, et al. Towards a better understanding of Artemisia vulgaris: Botany, phytochemistry, pharmacological and biotechnological potential. Food Res Int. 2018; 109: 403-415. DOI: 10.1016/j.foodres.2018.03.072

Trifan A, Zengin G, Sinan KI, Sieniawska E, Sawicki R, Maciejewska-Turska M, et al. Unveiling the phytochemical profile and biological potential of five Artemisia species. Antioxidants. 2022; 11(5): 1017. DOI: 10.3390/antiox11051017

Soon L, Ng PQ, Chellian J, Madheswaran T, Panneerselvam J, Gupta G, et al. Therapeutic potential of Artemisia vulgaris: An insight into underlying immunological mechanisms. J Environ Pathol Toxicol Oncol. 2019; 38(3): 205-216. DOI: 10.1615/JEnvironPatholToxicolOncol.2019029397

Pandey J, Bhusal S, Nepali L, Khatri M, Ramdam R, Barakoti H, et al. Anti-inflammatory activity of Artemisia vulgaris leaves, originating from three different altitudes of Nepal. Sci World J. 2021; 2021: 6678059. DOI: 10.1155/2021/6678059

Ashok PK and Upadhyaya K. Evaluation of analgesic and anti-inflammatory activities of aerial parts of Artemisia vulgaris L. in experimental animal models. J Biol Act Prod Nat. 2013; 3(1): 101-105. DOI: 10.1080/22311866.2013.782761

Temraz A and El-Tantawy WH. Characterization of antioxidant activity of extract from Artemisia vulgaris. Pak J Pharm Sci. 2008; 21(4): 321-326.

Ben Nasr S, Aazza S, Mnif W, and Miguel M. In-vitro antioxidant and anti-inflammatory activities of Pituranthos chloranthus and Artemisia vulgaris from Tunisia. Int J Appl Pharm Sci Res. 2020; 11(2): 605-614.

Khan AU and Gilani AH. Antispasmodic and bronchodilator activities of Artemisia vulgaris are mediated through dual blockade of muscarinic receptors and calcium influx. J Ethnopharmacol. 2009; 126(3): 480-486. DOI: 10.1016/j.jep.2009.09.010

Lim TK. Glycyrrhiza glabra. Edible Med Non-Med Plants. 2015; 22: 354-457. DOI: 10.1007/978-94-017-7276-1_18

Zang Y. Pharmacological activities of coumarin compounds in Licorice: A review. Nat Prod Commun. 2020; 15(9): 1934578X20953954. DOI: 10.1177/1934578X20953954

Sun J, Zhang Q, Yang G, Li Y, Fu Y, Zheng Y, et al. The licorice flavonoid isoliquiritigenin attenuates Mycobacterium tuberculosis-induced inflammation through Notch1/NF-κB and MAPK signaling pathways. J Ethnopharmacol. 2022; 294: 115368. DOI: 10.1016/j.jep.2022.115368

Frattaruolo L, Carullo G, Brindisi M, Mazzotta S, Bellissimo L, Rago V, et al. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Antioxidants. 2019; 8(6): 186. DOI: 10.3390/antiox8060186

Ma C, Ma Z, Liao XL, Liu J, Fu Q, and Ma S. Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4+ CD25+ Foxp3+ regulatory T cells in ovalbumin-sensitized mice. J Ethnopharmacol. 2013; 148(3): 755-762. DOI: 10.1016/j.jep.2013.04.021

Wu Q, Tang Y, Zhang J, Hu X, Wang Q, and Huang J. Therapeutic effects of glycyrrhizic acid on asthma airway inflammation in mice and its mechanism. Zhonghua Yi Xue Za Zhi. 2014; 94(42): 3338-3344.

Shitole M and Pawar V. Study of potential antitussive activity of Glycyrrhiza glabra granules by using a cough model induced by Sulphur dioxide gas in mice. Asian J Pharm Clin Res. 2019; 12(10): 262-267. DOI: 10.22159/ajpcr.2019.v12i10.33967

Kuang Y, Li B, Fan J, Qiao X, and Ye M. Antitussive and expectorant activities of licorice and its major compounds. Bioorg Med Chem. 2018; 26(1): 278-284. DOI: 10.1016/j.bmc.2017.11.046

Saha S, Nosál'ová G, Ghosh D, Flešková D, Capek P, and Ray B. Structural features and in vivo antitussive activity of the water extracted polymer from Glycyrrhiza glabra. Int J Biol Macromol. 2011; 48(4): 634-638. DOI: 10.1016/j.ijbiomac.2011.02.003

Zadeh JB, Kor ZM, and Goftar MK. Licorice (Glycyrrhiza glabra Linn) as a valuable medicinal plant. Int J Adv Biol Biomed Res. 2013; 1(10): 1281-1288.

Martins N, Barros L, Dueñas M, Santos-Buelga C, and Ferreira IC. Characterization of phenolic compounds and antioxidant properties of Glycyrrhiza glabra L. rhizomes and roots. RSC Adv. 2015; 5(34): 26991-26997. DOI: 10.1039/C5RA03963K

Sharma V and Agrawal R. In vivo antioxidant and hepatoprotective potential of Glycyrrhiza glabra extract on carbon tetra chloride (CCl4) induced oxidative-stress mediated hepatotoxicity. Int J Res Med Sci. 2014; 2(1): 314-320. DOI: 10.5455/2320-6012.ijrms20140260

Shang H, Cao S, Wang J, Zheng H, and Putheti R. Glabridin from Chinese herb licorice inhibits fatigue in mice. Afr J Tradit Complement Altern Med. 2010; 7(1): 17-23. DOI: 10.4314/ajtcam.v7i1.57225

Trivedi R and Sharma K. Hydroalcoholic extract of Glycyrrhiza glabra linn. attenuates chronic fatigue stress induced behavioral alterations in mice. Int J Pharm Biol Arch. 2011; 2(3): 996-1001.

Am Lee S, Lee SH, Kim JY, and Lee WS. Effects of glycyrrhizin on lipopolysaccharide-induced acute lung injury in a mouse model. J Thorac Dis. 2019; 11(4): 1287-1302. DOI: 10.21037/jtd.2019.04.14

Wang J, Ren C, Bi W, and Batu W. Glycyrrhizin mitigates acute lung injury by inhibiting the NLRP3 inflammasome in vitro and in vivo. J Ethnopharmacol. 2023; 303: 115948. DOI: 10.1016/j.jep.2022.115948

Viswanathan V, Pharande R, Bannalikar A, Gupta P, Gupta U, and Mukne A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev Ind Pharm. 2019; 45(1): 11-20. DOI: 10.1080/03639045.2018.1513025

Grover IS, Rai J, Kajal NC, and Bhushan B. Effect of liquorice [Glycyrrhiza glabra linn.] As an adjuvant in newly diagnosed sputum smear-positive patients of pulmonary tuberculosis on directly observed treatment short course (dots) therapy. Chest. 2006; 130(4): 95S. DOI: 10.1378/chest.130.4_MeetingAbstracts.95S-c

Kumar V, Kaur N, Kaur A, and Wadhwa P. Phytochemistry and pharmacology of Indian traditional plant hyssop (Hyssopus officinalis L.): A Review. Nat Prod J. 2023; 13(4): 11-41. DOI: 10.2174/2210315512666220811153919

Hanganu D, Pârvu A, Mărculescu A, Oniga I, Tiperciuc B, and Benedec D. Hyssopus officinalis L. (fam. Lamiaceae) a potential plant food supplements with anti-inflammatory effect. J Eco Agri Tourism. 2016; 12(2): 10-14.

Mićović T, Stanković JSK, Bauer R, Nöst X, Marković Z, Milenković D, et al. In vitro, in vivo and in silico evaluation of the anti-inflammatory potential of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae). J Ethnopharmacol. 2022; 293: 115201. DOI: 10.1016/j.jep.2022.115201

Ma X, Ma X, Ma Z, Wang J, Sun Z, Yu W, et al. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model. Exp Ther Med. 2014; 8(5): 1371-1374. DOI: 10.3892/etm.2014.1978

Ma X, Ma X, Ma Z, Sun Z, Yu W, Wang J, et al. The effects of uygur herb Hyssopus officinalis L. on the process of airway remodeling in asthmatic mice. Evid Based Complement Alternat Med. 2014; 2014: 710870. DOI: 10.1155/2014/710870

Alinezhad H, Azimi R, Zare M, Ebrahimzadeh MA, Eslami S, Nabavi SF, et al. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. angustifolius. Int J Food Prop. 2013; 16(5): 1169-1178. DOI: 10.1080/10942912.2011.578319

Özer H, Sökmen M, Güllüce M, Adigüzel A, Kilic H, Şahin F, et al. In vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of Hyssopus officinalis L. ssp. angustifolius. Ital J Food Sci. 2006; 18(1): 33-48.

Fathiazad F, Mazandarani M, and Hamedeyazdan S. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran. Adv Pharm Bull. 2011; 1(2): 63-67.

Hennia A, Nemmiche S, Dandlen S, and Miguel MG. Myrtus communis essential oils: Insecticidal, antioxidant and antimicrobial activities: A review. J Essent Oil Res. 2019; 31(6): 487-545. DOI: 10.1080/10412905.2019.1611672

Akbar S and Akbar S. Myrtus communis L. (Myrtaceae). Handbook of 200 Medicinal Plants: A comprehensive review of their traditional medical uses and scientific justifications. 2020: 1251-1262. DOI: 10.1007/978-3-030-16807-0_131

Dabbaghi MM, Fadaei MS, Soleimani Roudi H, Baradaran Rahimi V, and Askari VR. A review of the biological effects of Myrtus communis. Physiol Rep. 2023; 11(14): e15770. DOI: 10.14814/phy2.15770

Khosropour P, Sajjadi S-E, Talebi A, and Minaiyan M. Anti-inflammatory effect of Myrtus communis hydroalcoholic extract and essential oil on acetic acid-induced colitis in rats. J Rep Pharm Sci. 2019; 8(2): 204-210. DOI: 10.4103/jrptps.JRPTPS_8_19

Feißt C, Franke L, Appendino G, and Werz O. Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J Pharmacol Exp Ther. 2005; 315(1): 389-396. DOI: 10.1124/jpet.105.090720

Rossi A, Di Paola R, Mazzon E, Genovese T, Caminiti R, Bramanti P, et al. Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J Pharmacol Exp Ther. 2009; 329(1): 76-86. DOI: 10.1124/jpet.108.143214

Wannes WA, Mhamdi B, Sriti J, Jemia MB, Ouchikh O, Hamdaoui G, et al. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem Toxicol. 2010; 48(5): 1362-1370. DOI: 10.1016/j.fct.2010.03.002

Amensour M, Sendra E, Abrini J, Bouhdid S, Pérez-Alvarez JA, and Fernández-López J. Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts. Nat Prod Commun. 2009; 4(6): 1934578X0900400616. DOI: 10.1177/1934578X0900400616

Taher MS, Salloom YF, Al-Asadi RA, Al-Mousswi ZJ, and Alamrani HA. The medicinal importance of Thyme plant (Thymus vulgaris). Biomedicine. 2021; 29;41(3):531-4. DOI: 10.51248/.v41i3.708

Grespan R, Aguiar RP, Giubilei FN, Fuso RR, Damião MJ, Silva EL, et al. Hepatoprotective effect of pretreatment with Thymus vulgaris essential oil in experimental model of acetaminophen-induced injury. Evid Based Complement Alternat Med. 2014; 2014: 954136. DOI: 10.1155/2014/954136

Thompson JD, Chalchat JC, Michet A, Linhart YB, and Ehlers B. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J Chem Ecol. 2003; 29(4): 859-880. DOI: 10.1023/A:1022927615442

de Lira Mota KS, de Oliveira Pereira F, de Oliveira WA, Lima IO, and de Oliveira Lima E. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules. 2012; 17(12): 14418-14433. DOI: 10.3390/molecules171214418

Benameur Q, Gervasi T, Pellizzeri V, Pľuchtová M, Tali-Maama H, Assaous F, et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat Prod Res. 2019; 33(18): 2647-2654. DOI: 10.1080/14786419.2018.1466124

Fachini-Queiroz FC, Kummer R, Estevão-Silva CF, Carvalho MD, Cunha JM, Grespan R, et al. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid Based Complement Alternat Med. 2012; 2012: 657026. DOI: 10.1155/2012/657026

Ocaña A and Reglero G. Effects of thyme extract oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on cytokine production and gene expression of oxLDL-stimulated THP-1-macrophages. J Obes. 2012; 2012: 104706. DOI: 10.1155/2012/104706

Mousa AM, Almatroudi A, Alwashmi AS, Al Abdulmonem W, Aljohani AS, Alhumaydhi FA, et al. Thyme oil alleviates Ova-induced bronchial asthma through modulating Th2 cytokines, IgE, TSLP and ROS. Biomed Pharmacother. 2021; 140: 111726. DOI: 10.1016/j.biopha.2021.111726

Al-Khalaf MI. Thyme and thymol effects on induced bronchial asthma in mice. Life Sci J. 2013; 10(2): 693-699. DOI: 10.7813/2075-4124.2013/5-2/A.25

Aldosary S, El-Rahman S, Al-Jameel S, and Alromihi N. Antioxidant and antimicrobial activities of Thymus vulgaris essential oil contained and synthesis thymus (Vulgaris) silver nanoparticles. Braz J Biol. 2021; 83: e244675. DOI: 10.1590/1519-6984.244675

Rahgozar N, Bakhshi Khaniki G, and Sardari S. Evaluation of antimycobacterial and synergistic activity of plants selected based on cheminformatic parameters. Iran Biomed J. 2018; 22(6): 401-407. DOI: 10.29252/22.6.401

Lall N and Meyer JJ. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. J Ethnopharmacol. 1999; 66(3): 347-354. DOI: 10.1016/S0378-8741(98)00185-8

Dizaji P. In vitro antibacterial activity of Thymus vulgaris essential oil against Mycobacterium tuberculosis. Infect Epidemiol Microbiol. 2018; 4(2): 47-51.

Ramazanzadeh R, Marzban A, and Shakib P. Anti-Mycobacterium tuberculosis effects of folk medicinal plants in Iran: A Mini-systematic review. Iran J Med Microbiol. 2023; 17(1): 1-13. DOI: 10.30699/ijmm.17.1.1

Boskabady MH, Shafei MN, Saberi Z, and Amini S. Pharmacological effects of Rosa damascena. Iran J Basic Med Sci. 2011; 14(4): 295-307.

Fatemi F, Golbodagh A, Hojihosseini R, Dadkhah A, Akbarzadeh K, Salome D, et al. Anti-inflammatory effects of deuterium-depleted water plus rosa damascena mill. Essential oil via cyclooxygenase-2 pathway in rats. Turk J Pharm Sci. 2020; 17(1): 99-106. DOI: 10.4274/tjps.galenos.2018.24381

Dadkhah A, Fatemi F, Mohammadi Malayeri MR, Karvin Ashtiani MH, Mosavi Z, Naij S, et al. The anti-inflammatory and antioxidant effects of Rosa damascena Mill. essential oil on the lung injury in the CLP model. J Med Plants. 2020; 19(74): 277-294. DOI: 10.29252/jmp.19.74.277

Chroho M, Bouymajane A, Oulad El Majdoub Y, Cacciola F, Mondello L, Aazza M, et al. Phenolic composition, antioxidant and antibacterial activities of extract from flowers of Rosa damascena from Morocco. Separations. 2022; 9(9): 247. DOI: 10.3390/separations9090247

Alizadeh Z and Fattahi M. Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask Rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Sci Hortic. 2021; 288: 110341. DOI: 10.1016/j.scienta.2021.110341

Mawarni E, Ginting CN, Chiuman L, Girsang E, Handayani RAS, and Widowati W. Antioxidant and elastase inhibitor potential of petals and receptacle of rose flower (Rosa damascena). Pharm Sci Res. 2020; 7(4): 1-8. DOI: 10.7454/psr.v7i2.1016

Boskabady M, Kiani S, and Rakhshandah H. Relaxant effects of Rosa damascena on guinea pig tracheal chains and its possible mechanism(s). J Ethnopharmacol. 2006; 106(3): 377-382. DOI: 10.1016/j.jep.2006.01.013

Demirel S. Rosa damascena Miller essential oil relaxes rat trachea via KV channels, KATP channels, and BKCa channels. Prostaglandins Other Lipid Mediat. 2022; 163: 106673. DOI: 10.1016/j.prostaglandins.2022.106673

Raghuvanshi D, Dhalaria R, Sharma A, Kumar D, Kumar H, Valis M, et al. Ethnomedicinal plants traditionally used for the treatment of Jaundice (Icterus) in Himachal Pradesh in Western Himalaya-A review. Plants. 2021; 10(2): 232. DOI: 10.3390/plants10020232

Singh M, Singh N, Khare PB, and Rawat AK. Antimicrobial activity of some important Adiantum species used traditionally in indigenous systems of medicine. J Ethnopharmacol. 2008; 115(2): 327-329. DOI: 10.1016/j.jep.2007.09.018

Dehdari S and Hajimehdipoor H. Medicinal properties of Adiantum capillus-veneris Linn. in traditional medicine and modern phytotherapy: A review article. Iran J Public Health. 2018; 47(2): 188-197.

Khoramian L, Sajjadi S-E, and Minaiyan M. Anti-inflammatory effect of Adiantum capillus-veneris hydroalcoholic and aqueous extracts on acetic acid-induced colitis in rats. Avicenna J Phytomed. 2020; 10(5): 492-503.

Ullah S, Jan G, Gul F, Khan S, Khattak M, Bibi H, et al. Phytochemistry, anti-inflammatory and antipyretic activities of Adiantum capillus-veneris in Swiss albino mice. Int J Fauna Biol Stud. 2018; 5(3): 19-25.

Seif M, Aati H, Amer M, Ragauskas AJ, Seif A, El-Sappah AH, et al. Mitigation of hepatotoxicity via boosting antioxidants and reducing oxidative stress and inflammation in carbendazim-treated rats using Adiantum Capillus-Veneris L. Extract. Molecules. 2023; 28(12): 4720. DOI: 10.3390/molecules28124720

Khodaie L, Esnaashari S, and Moghaddam SB. Essential oil of arial parts of Adiantum capillus-veneris: Chemical composition and antioxidant activity. Jundishapur J Nat Pharm Prod. 2015; 10(4): e21968. DOI: 10.17795/jjnpp-21968

Abdulqadir A, Cakmak YS, and Zengin G. Phenolic compounds, antioxidant properties and enzyme inhibition ability of Adiantum capillus veneris L. linked to alzheimer's disease, diabetes mellitus and skin disorders. Curr Org Chem. 2018; 22(17): 1697-1703. DOI: 10.2174/1385272822666180711145256

Boukada F, Sitayeb S, Khadem H, Meddah B, and Zohra SF. Chemical composition, antioxidant and antibacterial activity of Adiantum capillus-veneris L. extract from Algeria. Kragujevac J Sci. 2022; 44: 91-101. DOI: 10.5937/KgJSci2244091B

Yadegari M, Riahy S, Mirdar S, Hamidian G, Afkhami SM, Saeidi A, et al. The TNF-α, P53 protein response and lung respiratory changes related to exercise, chronic hypoxia and adiantum capillus-veneris supplementation. Adv Respir Med. 2019; 87(4): 226-234. DOI: 10.5603/ARM.2019.0037

Yadegari M, Sellami M, Riahy S, Mirdar S, Hamidian G, Saeidi A, et al. Supplementation of Adiantum capillus-veneris modulates alveolar apoptosis under hypoxia condition in Wistar rats exposed to exercise. Medicina. 2019; 55(7): 401. DOI: 10.3390/medicina55070401

Piri F, Mirdar S, and Hedayati M. The interactive effect of interval training and ethanol extract of Adiantum Capillus Veneris on the levels of metallothionein in lung male rats. Complement Med J. 2019; 8(4): 3467-3477.

Akram M. Minireview on Achillea millefolium Linn. J Membr Biol. 2013; 246(9): 661-663. DOI: 10.1007/s00232-013-9588-x

Ali SI, Gopalakrishnan B, and Venkatesalu V. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: A review. Phytother Res. 2017; 31(8): 1140-1161. DOI: 10.1002/ptr.5840

Ngo HT, Hwang E, Kang H, Park B, Seo SA, and Yi TH. Anti-inflammatory effects of Achillea millefolium on atopic dermatitis-like skin lesions in NC/Nga mice. Am J Chin Med. 2020; 48(05): 1121-1140. DOI: 10.1142/S0192415X2050055X

Burk DR, Cichacz ZA, and Daskalova SM. Aqueous extract of Achillea millefolium L. (Asteraceae) inflorescences suppresses lipopolysaccharide-induced inflammatory responses in RAW 264.7 murine macrophages. J Med Plants Res. 2010; 4(3): 225-234. DOI: 10.1016/j.jep.2009.09.026

Raeisi H, Azimirad M, Asadi-Sanam S, Asadzadeh Aghdaei H, Yadegar A, and Zali MR. The anti-inflammatory and anti-apoptotic effects of Achillea millefolium L. extracts on Clostridioides difficile ribotype 001 in human intestinal epithelial cells. BMC Complement Med Ther. 2024; 24(1): 37. DOI: 10.1186/s12906-024-04335-2

Fierascu I, Ungureanu C, Avramescu SM, Fierascu RC, Ortan A, Soare LC, et al. In vitro antioxidant and antifungal properties of Achillea millefolium L. Rom Biotechnol Lett. 2015; 20(4): 10626-10636.

Georgieva L, Gadjalova A, Mihaylova D, and Pavlov A. Achillea millefolium L. - phytochemical profile and in vitro antioxidant activity. Int Food Res J. 2015; 22(4): 1347-1354.

Kazemi M. Phytochemical and antioxidant properties of Achillea millefolium from the eastern region of Iran. Int J Food Prop. 2015; 18(10): 2187-2192. DOI: 10.1080/10942912.2014.966388

Arias-Durán L, Estrada-Soto S, Hernández-Morales M, Chávez-Silva F, Navarrete-Vázquez G, León-Rivera I, et al. Tracheal relaxation through calcium channel blockade of Achillea millefolium hexanic extract and its main bioactive compounds. J Ethnopharmacol. 2020; 253: 112643. DOI: 10.1016/j.jep.2020.112643

Al-Ezzy RM, Al Anee R, and Ibrahim NA. Assessments of immunological activity of Achillea millefolium methanolic extract on albino male mice. J Pharm Pharmacol. 2018; 6: 563-569. DOI: 10.17265/2328-2150/2018.06.002

Freysdottir J, Logadottir OT, Omarsdottir SS, Vikingsson A, and Hardardottir I. A polysaccharide fraction from Achillea millefolium increases cytokine secretion and reduces activation of Akt, ERK and NF-κB in THP-1 monocytes. Carbohydr Polym. 2016; 143: 131-138. DOI: 10.1016/j.carbpol.2016.02.017

Kooti W, Moradi M, Ali-Akbari S, Sharafi-Ahvazi N, Asadi-Samani M, and Ashtary-Larky D. Therapeutic and pharmacological potential of Foeniculum vulgare Mill: a review. J HerbMed Pharmacol. 2015; 4(1): 1-9.

Miraj S and Kiani S. Study of antibacterial, antimycobacterial, antifungal, and antioxidant activities of Foeniculum vulgare: A review. Der Pharm Lett. 2016; 8(9): 200-205.

Yang IJ, Lee DU, and Shin HM. Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol. 2015; 37(3): 308-317. DOI: 10.3109/08923973.2015.1038751

Lee HS, Kang P, Kim KY, and Seol GH. Foeniculum vulgare Mill. Protects against lipopolysaccharide-induced acute lung injury in mice through ERK-dependent NF-κB activation. Korean J Physiol Pharmacol. 2015; 19(2): 183-189. DOI: 10.4196/kjpp.2015.19.2.183

Salami M, Rahimmalek M, and Ehtemam MH. Inhibitory effect of different fennel (Foeniculum vulgare) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chem. 2016; 213: 196-205. DOI: 10.1016/j.foodchem.2016.06.070

Ahmed AF, Shi M, Liu C, and Kang W. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci Hum Wellness. 2019; 8(1): 67-72. DOI: 10.1016/j.fshw.2019.03.004

Boskabady M and Khatami A. Relaxant effect of Foeniculum vulgare on isolated guinea pig tracheal chains. Pharm Biol. 2003; 41(3): 211-215. DOI: 10.1076/phbi.41.3.211.15095

Rehman NU, Ansari MN, Samad A, and Ahmad W. In Silico and Ex Vivo studies on the spasmolytic activities of fenchone using isolated guinea pig trachea. Molecules. 2022; 27(4): 1360. DOI: 10.3390/molecules27041360

Shanmugakumar S, Gunasekaran S, Hyma P, Anil G, Praveen A, and Rajanikanth D. Phytochemical and antitubercular screening of the leaf extracts of Foeniculum vulgare. World J Pharma Res. 2013; 2(5): 1617-1625.

Esquivel-Ferriño PC, Favela-Hernández JMJ, Garza-González E, Waksman N, Ríos MY, and Camacho-Corona MdR. Antimycobacterial activity of constituents from Foeniculum vulgare var. dulce grown in Mexico. Molecules. 2012; 17(7): 8471-8482. DOI: 10.3390/molecules17078471

Yu Y, Liu G, Piao M, Lang M, Wang Y, Jin M, et al. Chemical constituents of Polygonum aviculare L. and their chemotaxonomic significance. Biochem Syst Ecol. 2022; 105: 104529. DOI: 10.1016/j.bse.2022.104529

Benrahou K, Driouech M, El Guourrami O, Mrabti HN, Cherrah Y, and El Abbes Faouzi M. Medicinal uses, phytochemistry, pharmacology, and taxonomy of Polygonum aviculare L.: A comprehensive review. Med Chem Res. 2023; 32(3): 409-423. DOI: 10.1007/s00044-023-03021-1

Granica S, Czerwińska ME, Żyżyńska-Granica B, and Kiss AK. Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. Fitoterapia. 2013; 91: 180-188. DOI: 10.1016/j.fitote.2013.08.026

Mureşan M, Olteanu D, Filip GA, Clichici S, Baldea I, Jurca T, et al.. Comparative study of the pharmacological properties and biological effects of polygonum aviculare L. Herba extract-entrapped liposomes versus quercetin-entrapped liposomes on doxorubicin-induced toxicity on HUVECs. Pharmaceutics. 2021; 13(9): 1418. DOI: 10.3390/pharmaceutics13091418

Mahnashi MH, Alyami BA, Alqahtani YS, Alqarni AO, Jan MS, Hussain F, et al. Antioxidant molecules isolated from edible prostrate knotweed: Rational derivatization to produce more potent molecules. Oxid Med Cell Longev. 2022; 2022: 3127480. DOI: 10.1155/2022/3127480

Wu L, Chen Z, Li S, Wang L, and Zhang J. Eco-friendly and high-efficient extraction of natural antioxidants from Polygonum aviculare leaves using tailor-made deep eutectic solvents as extractants. Sep Purif Technol. 2021; 262: 118339. DOI: 10.1016/j.seppur.2021.118339

Mahmoudi M, Abdellaoui R, Feki E, Boughalleb F, Zaidi S, and Nasri N. Analysis of Polygonum aviculare and Polygonum maritimum for minerals by flame atomic absorption spectrometry (FAAS), polyphenolics by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), and antioxidant properties by spectrophotometry. Anal Lett. 2021; 54(18): 2940-2955. DOI: 10.1080/00032719.2021.1906267

Louati K and Berenbaum F. Fatigue in chronic inflammation-a link to pain pathways. Arthritis Res Ther. 2015; 17: 254. DOI: 10.1186/s13075-015-0784-1

Park SH, Jang S, Son E, Lee SW, Park SD, Sung Y-Y, et al. Polygonum aviculare L. extract reduces fatigue by inhibiting neuroinflammation in restraint-stressed mice. Phytomedicine. 2018; 42: 180-189. DOI: 10.1016/j.phymed.2018.03.042

El-Far AH, Oyinloye BE, Sepehrimanesh M, Allah MAG, Abu-Reidah I, Shaheen HM, et al. Date Palm (Phoenix dactylifera): Novel findings and future directions for food and drug discovery. Curr Drug Discov Technol. 2019; 16(1): 2-10. DOI: 10.2174/1570163815666180320111937

Tahvilzadeh M, Hajimahmoodi M, and Rahimi R. The role of date palm (Phoenix dactylifera L) Pollen in fertility: A comprehensive review of current evidence. J Evid Based Complementary Altern Med. 2015; 21(4): 320-324. DOI: 10.1177/2156587215609851

Sassi CB, Talbi W, Ghazouani T, Amara SB, and Fattouch S. Date palm. Nutr Compos Antioxid Prop Fruits Veg. 2020: 681-694. DOI: 10.1016/B978-0-12-812780-3.00042-8

Kehili HE, Zerizer S, Beladjila KA, and Kabouche Z. Anti-inflammatory effect of Algerian date fruit (Phoenix dactylifera). Food Agric Immunol. 2016; 27(6): 820-829. DOI: 10.1080/09540105.2016.1183597

Hmidani A, Bourkhis B, Khouya T, Ramchoun M, Filali-Zegzouti Y, and Alem C. Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon. 2020; 6(2): e03436. DOI: 10.1016/j.heliyon.2020.e03436

El Hilaly J, Ennassir J, Benlyas M, Alem C, Amarouch M-Y, and Filali-Zegzouti Y. Anti-inflammatory properties and phenolic profile of six Moroccan date fruit (Phoenix dactylifera L.) varieties. J King Saud Univ Sci. 2018; 30(4): 519-526. DOI: 10.1016/j.jksus.2017.08.011

Roshankhah S, Abdolmaleki A, and Salahshoor MR. Anti-inflammatory, anti-apoptotic, and antioxidant actions of Middle Eastern Phoenix dactylifera extract on mercury-induced hepatotoxicity in vivo. Mol Biol Rep. 2020; 47(8): 6053-6065. DOI: 10.1007/s11033-020-05680-4

Ramchoun M, Alem C, Ghafoor K, Ennassir J, and Zegzouti YF. Functional composition and antioxidant activities of eight Moroccan date fruit varieties (Phoenix dactylifera L.). J Saudi Soc Agric Sci. 2017; 16(3): 257-264. DOI: 10.1016/j.jssas.2015.08.005

Alem C, Ennassir J, Benlyas M, Mbark AN, and Zegzouti YF. Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. J Saudi Soc Agric Sci. 2017; 16(4): 350-357. DOI: 10.1016/j.jssas.2015.11.002

Osman NN and Al-Shubailly F. Anti-inflammatory, immune-modulatory and antioxidant effects of date fruit (Phoenix dactylifera) extract in rats treated with AlCl3. Int J Pharm Res Allied Sci. 2017; 6(2): 78-89.

Almatroodi SA, Khan AA, Aloliqi AA, Ali Syed M, and Rahmani AH. Therapeutic potential of Ajwa dates (Phoenix dactylifera) extract in prevention of Benzo(a)pyrene-induced lung injury through the modulation of oxidative stress, inflammation, and cell signalling molecules. Appl Sci. 2022; 12(13): 6784. DOI: 10.3390/app12136784

Bahri S, Abdennabi R, Mlika M, Neji G, Jameleddine S, and Ali RB. Effect of Phoenix dactylifera L. sap against bleomycin-induced pulmonary fibrosis and oxidative stress in rats: phytochemical and therapeutic assessment. Nutr Cancer. 2019; 71(5): 781-791. DOI: 10.1080/01635581.2018.1521442

Ljubuncic P, Dakwar S, Portnaya I, Cogan U, Azaizeh H, and Bomzon A. Aqueous extracts of Teucrium polium possess remarkable antioxidant activity in vitro. Evid Based Complement Alternat Med. 2006; 3(3): 329-338. DOI: 10.1093/ecam/nel028

Bahramikia S and Yazdanparast R. Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae). Phytother Res. 2012; 26(11): 1581-1593. DOI: 10.1002/ptr.4617

Khazaei M, Nematollahi-Mahani SN, Mokhtari T, and Sheikhbahaei F. Review on Teucrium polium biological activities and medical characteristics against different pathologic situations. J Contemp Med Sci. 2018; 4(1): 1-7. DOI: 10.22317/jcms.03201801

Amraei M, Ghorbani A, Seifinejad Y, Mousavi SF, Mohamadpour M, and Shirzadpour E. The effect of hydroalcoholic extract of Teucrium polium L. on the inflammatory markers and lipid profile in hypercholesterolemic rats. J Inflamm Res. 2018; 11: 265-272. DOI: 10.2147/JIR.S165172

Rahmouni F, Hamdaoui L, and Rebai T. In vivo anti-inflammatory activity of aqueous extract of Teucrium polium against carrageenan-induced inflammation in experimental models. Arch Physiol Biochem. 2017; 123(5): 313-321. DOI: 10.1080/13813455.2017.1333517

Al-Naemi HA, Alasmar RM, and Al-Ghanim K. Alcoholic extracts of Teucrium polium exhibit remarkable anti-inflammatory activity: In vivo study. Biomol Biomed. 2024; 24(1): 82-92. DOI: 10.17305/bb.2023.9239

Ait Chaouche FS, Mouhouche F, and Hazzit M. Antioxidant capacity and total phenol and flavonoid contents of Teucrium polium L. grown in Algeria. Mediterr J Nutr Metab. 2018; 11(2): 135-144. DOI: 10.3233/MNM-17189

Özer Z, Kılıç T, Çarıkçı S, and Yılmaz H. Investigation of phenolic compounds and antioxidant activity of Teucrium polium L. decoction and infusion. Balıkesir Üniv Fen Bilim Enst Derg. 2018; 20(1): 212-218. DOI: 10.25092/baunfbed.370594

El Atki Y, Aouam I, Taroq A, Lyoussi B, Taleb M, and Abdellaoui A. Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Mater Today Proc. 2019; 13: 777-783. DOI: 10.1016/j.matpr.2019.04.040

Matic S, Popovic S, Baskic D, Todorovic D, Vukovic N, Stankovic M, et al. Methanolic extract of Teucrium Polium exerts immunomodulatory properties in human peripheral blood mononuclear cells. Exp Appl Biomed Res. 2022; 23(4): 345-351. DOI: 10.2478/sjecr-2020-0018