CRISPR/Cas9-mediated Genome Editing: In vivo Review

Main Article Content

Narges Lotfalizadeh
Soheil Sadr
Pouria Ahmadi Simab
Ashkan Hajjafari
Hassan Borji
Zeynab Bayat

Abstract

The CRISPR/Cas9 system has been a game-changer in genetics and biotechnology. This study aimed to investigate the existing in vivo uses and their potential to increase our understanding of gene function and biological processes in animal models. With its remarkable precision and accuracy, researchers can now easily edit specific genes within cells and organisms. This technology has opened up new avenues for studying genetic diseases and developing therapies to treat them. One of the most significant advantages of the CRISPR/Cas9 system is its ability to create precise cellular and animal models of human diseases. This allows researchers to investigate the role of genetics in disease development and to develop more effective therapies. For example, the system can correct genetic mutations that cause cystic fibrosis or sickle cell anemia. The therapeutic potential of CRISPR/Cas9 is enormous, especially in gene therapy. By correcting specific genetic mutations, the system can potentially treat human diseases that are currently untreatable with conventional therapies. However, some challenges still need to be addressed before this technology can be used in clinical settings. Despite these challenges, the potential of CRISPR/Cas9 to revolutionize the field of genetics and biotechnology cannot be overstated. Ultimately, this technology has the potential to transform medicine by providing new therapies for a wide range of genetic diseases.

Article Details

How to Cite
Lotfalizadeh, N., Sadr, S., Ahmadi Simab, P., Hajjafari, A., Borji, H., & Bayat, Z. (2022). CRISPR/Cas9-mediated Genome Editing: In vivo Review. Journal of Lab Animal Research, 1(1), 47–51. https://doi.org/10.58803/jlar.v1i1.13
Section
Review Article

References

Khalil AM. The genome editing revolution. J gen eng biotechnolo. 2020; 18(1): 1-16. DOI: https://doi.org/10.1186/s43141-020-00078-y

Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020; 578(7794): 229-236. DOI: https://doi.org/10.1038/s41586-020-1978-5

Huang J, and Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens.

FEMS Microbiology Reviews. 2022; 46(6): fuac035. DOI: https://doi.org/10.1093/femsre/fuac035

Andergassen D, and Rinn JL. From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet. 2022; 23(4): 229-243. DOI: https://doi.org/10.1038/s41576-021-00427-8

Anzalone AV, Koblan LW, and Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38(7): 824-844. DOI: https://doi.org/10.1038/s41587-020-0561-9

Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M, et al. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts: BI. 2022; 12(4): 371. DOI: https://doi.org/10.34172/bi.2022.23871

Huang J, Rowe D, Subedi P, Zhang W, Suelter T, Valent B, et al. CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae. Nat Commun. 2022; 13(1): 7168. DOI: https://doi.org/10.1038/s41467-022-34736-1

Ramsden DA, Carvajal-Garcia J, and Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nature rev Molecular cell biolo. 2022; 23(2): 125-140. DOI: https://doi.org/10.1038/s41580-021-00405-2

Jacinto FV, Link W, and Ferreira BI. CRISPR/Cas9‐mediated genome editing: From basic research to translational medicine. J Cell Mol Med. 2020; 24(7): 3766-3778. DOI: https://doi.org/10.1111/jcmm.14916

Saifaldeen M, Al-Ansari DE, Ramotar D, and Aouida M. CRISPR FokI dead Cas9 system: principles and applications in genome engineering. Cells. 2020; 9(11): 2518. DOI: https://doi.org/10.3390/cells9112518

Becker S, and Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021; 2: 100007. DOI: https://doi.org/10.1016/j.ggedit.2021.100007

Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life sciences. 2019; 232: 116636. DOI: https://doi.org/10.1016/j.lfs.2019.116636

Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, and Bijak M. Various aspects of a gene editing system crispr cas9. Int J Mol Sci. 2020; 21(24): 9604. DOI: https://doi.org/10.3390/ijms21249604

Lee SH, Park YH, Jin YB, Kim SU, and Hur JK. CRISPR diagnosis and therapeutics with single base pair precision. Trends in Molecular Medicine. 2020; 26(3): 337-350. DOI: https://doi.org/10.1016/j.molmed.2019.09.008

Khadempar S, Familghadakchi S, Motlagh RA, Farahani N, Dashtiahangar M, Rezaei H, et al. CRISPR–Cas9 in genome editing: Its function and medical applications. J cell Physiol. 2019; 234(5): 5751-5761. DOI: https://doi.org/10.1002/jcp.27476

Salman A, Kantor A, McClements ME, Marfany G, Trigueros S, MacLaren RE. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics. 2022; 14(9): 1842. DOI: https://doi.org/10.3390/pharmaceutics14091842

Doudna JA, and Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Sci. 2014; 346(6213): 1258096. DOI: https://doi.org/10.1126/science.1258096

Wang H, La Russa M, and Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016; 85: 227-264. DOI: https://doi.org/10.1146/annurev-biochem-060815-014607

Ishino Y, Shinagawa H, Makino K, Amemura M, and Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol Res. 1987; 169(12): 5429-5433. DOI: https://doi.org/10.1128/jb.169.12.5429-5433.1987

Mojica F, Ferrer C, Juez G, and Rodríguez‐Valera F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol. 1995; 17(1): 85-93. DOI: https://doi.org/10.1111/j.1365-2958.1995.mmi_17010085.x

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315(5819): 1709-1712. DOI: https://doi.org/10.1126/science.1138140

Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008; 321(5891): 960-964. DOI: https://doi.org/10.1126/science.1159689

Marraffini LA, and Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. science. 2008; 322(5909): 1843-1845. DOI: https://doi.org/10.1126/science.1165771

Peng J, Zhou Y, Zhu S, and Wei W. High‐throughput screens in mammalian cells using the CRISPR‐Cas9 system. The FEBS J. 2015; 282(11): 2089-2096. DOI: https://doi.org/10.1111/febs.13251

Motta BM, Pramstaller PP, Hicks AA, Rossini A. The impact of CRISPR/Cas9 technology on cardiac research: from disease modelling to therapeutic approaches. Stem cells int. 2017; 2017: 8960236 DOI: https://doi.org/10.1155/2017/8960236

Peng R, Lin G, and Li J. Potential pitfalls of CRISPR/Cas9‐mediated genome editing. The FEBS J. 2016; 283(7): 1218-1231. DOI: https://doi.org/10.1111/febs.13586

Zhang F, Song G, and Tian Y. Anti‐CRISPRs: The natural inhibitors for CRISPR‐Cas systems. Anim models and exp med. 2019; 2(2): 69-75. DOI: https://doi.org/10.1002/ame2.12069

Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, Van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016; 353(6299): aad5147. DOI: https://doi.org/10.1126/science.aad5147

Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482(7385): 331-338. DOI: https://doi.org/10.1038/nature10886

Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, et al. Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature. 2015; 519(7542): 199-202. DOI: https://doi.org/10.1038/nature14245

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011; 471(7340): 602-607. DOI: https://doi.org/10.1038/nature09886

Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 2016; 532(7600): 517-521. DOI: https://doi.org/10.1038/nature17945

Pickar-Oliver A, and Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol. 2019; 20(8): 490-507. DOI: https://doi.org/10.1038/s41580-019-0131-5

Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys. 2017; 46: 505-529. DOI: https://doi.org/10.1146/annurev-biophys-062215-010822

Zhu LJ. Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Front Biol. 2015; 10(4): 289-296. DOI: https://doi.org/10.1007/s11515-015-1366-y

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096): 816-821. DOI: https://doi.org/10.1126/science.1225829

Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, et al. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol. Biotechnol. 2023; 65(2): 227-242. DOI: https://doi.org/10.1007/s12033-022-00501-4

Miura H, Gurumurthy CB, Sato T, Sato M, and Ohtsuka M. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci. Rep. 2015; 5(1): 12799. DOI: https://doi.org/10.1038/srep12799

Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: hopes and challenges. Biomedicines. 2018; 6(4): 105. DOI: https://doi.org/10.3390/biomedicines6040105

Huang L, Hua Z, Xiao H, Cheng Y, Xu K, Gao Q, et al. CRISPR/Cas9-mediated ApoE-/-and LDLR-/-double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget. 2017; 8(23): 37751. DOI: https://doi.org/10.18632/oncotarget.17154

Tröder SE, Ebert LK, Butt L, Assenmacher S, Schermer B, and Zevnik B. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One. 2018; 13(5): e0196891. DOI: https://doi.org/10.1371/journal.pone.0196891

Bi Y, Sun L, Gao D, Ding C, Li Z, Li Y, et al. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS pathogens. 2014;10(5): e1004090. DOI: https://doi.org/10.1371/journal.ppat.1004090

Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell rep. 2016;17(5): 1453-1461. DOI: https://doi.org/10.1016/j.celrep.2016.09.092

Sánchez-Rivera FJ, and Jacks T. Applications of the CRISPR–Cas9 system in cancer biology. Nat Rev Cancer. 2015; 15(7): 387-393. DOI: https://doi.org/10.1038/nrc3950

Fellmann C, Gowen BG, Lin P-C, Doudna JA, and Corn JE. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat Rev Drug Discov. 2017; 16(2): 89-100. DOI: https://doi.org/10.1038/nrd.2016.238

Li H, Yang Y, Hong W, Huang M, Wu M, and Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020; 5(1): 1. DOI: https://doi.org/10.1038/s41392-019-0089-y

Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13(6): 659-562. DOI: https://doi.org/10.1016/j.stem.2013.10.016

Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, and Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science. 2014; 345(6201): 1184-1188. DOI: https://doi.org/10.1126/science.1254445

Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat biotechnol. 2014; 32(6): 551-553. DOI: https://doi.org/10.1038/nbt.2884

Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016; 351(6271): 400-403. DOI: https://doi.org/10.1126/science.aad5725

German DM, Mitalipov S, Mishra A, and Kaul S. Therapeutic genome editing in cardiovascular diseases. JACC: Basic Transl Sci. 2019; 4(1):122-131. DOI: https://doi.org/10.1016/j.jacbts.2018.11.004

Most read articles by the same author(s)