The Anticancer Potential of Ivermectin: Mechanisms of Action and Therapeutic Implications
Main Article Content
Abstract
Ivermectin is a well-known antiparasitic drug in the macrolide class with a 16-membered ring. It has been used for treating various parasitic diseases, including onchocerciasis, lymphatic filariasis, and strongyloidiasis. The present study aimed to review the mechanisms of action and therapeutic implications of Ivermectin as an anticancer agent. It has been used for over three decades, and its safety has been well-established in humans A growing body of evidence suggests that ivermectin has anticancer properties, making it an attractive candidate for treating various types of cancer. The reason is that ivermectin targets multiple signaling pathways, including the Wnt/β-catenin, PI3K/Akt/mTOR, and STAT3 pathways, to inhibit cancer cell proliferation and induce apoptosis. Inhibition of these pathways by ivermectin leads to suppression of cancer cell growth. Additionally, ivermectin has been shown to induce autophagy, which can lead to programmed cell death in cancer cells. One of the significant advantages of ivermectin as an anticancer drug is its safety profile. Furthermore, it is easily available and affordable, making it a promising alternative to conventional chemotherapy for various types of cancer, including breast, lung, and colon cancer. However, further research is needed to evaluate its clinical effectiveness in humans. Clinical trials are underway to investigate ivermectin's safety and efficacy in cancer treatment. In conclusion, the safety profile and low cost of ivermectin as an anticancer drug have turned it into a feasible alternative to conventional chemotherapy, which needs more investigation.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Jans DA, and Wagstaff KM. Ivermectin as a broad-spectrum host-directed antiviral: the real deal?. Cells. 2020; 9(9): 2100. DOI: https://doi.org/10.3390/cells9092100
Crump A. Ivermectin: enigmatic multifaceted ‘wonder’drug continues to surprise and exceed expectations. J Antibiot. 2017; 70(5): 495-505. DOI: https://doi.org/10.1038/ja.2017.11
Adegboro B, Lawani O, Oriaifo S, and Abayomi S. A review of the antiviral effects of ivermectin. African J Clin Exp Microbiol. 2021; 22(3): 322-329. DOI:10.4314/ajcem.v22i3.2
Heidary F, and Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot. 2020; 73(9): 593-602. DOI: https://doi.org/10.1038/s41429-020-0336-z
Chachar AZK, Khan KA, Asif M, Tanveer K, Khaqan A, and Basri R. Effectiveness of ivermectin in SARS-CoV-2/COVID-19 patients. Int J Sci. 2020; 9(09): 31-35. DOI:10.18483/ijSci.2378
Tang M, Hu X, Wang Y, Yao X, Zhang W, Yu C, et al. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res. 2021; 163: 105207. DOI: https://doi.org/10.1016/j.phrs.2020.105207
Laing R, Gillan V, and Devaney E. Ivermectin-old drug, new tricks?. Trends Parasitol. 2017; 33(6): 463-472. DOI: https://doi.org/10.1016/j.pt.2017.02.004
Nunes M, Duarte D, Vale N, and Ricardo S. Pitavastatin and Ivermectin Enhance the Efficacy of Paclitaxel in Chemoresistant High-Grade Serous Carcinoma. Cancers. 2022; 14(18): 4357. DOI:10.3390/cancers14184357
Markowska A, Kaysiewicz J, Markowska J, and Huczyński A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem. 2019; 29(13): 1549-1554. DOI: https://doi.org/10.1016/j.bmcl.2019.04.045
Nunes M, Henriques Abreu M, Bartosch C, and Ricardo S. Recycling the purpose of old drugs to treat ovarian cancer. Int J Mol Sci. 2020; 21(20): 7768. DOI:10.3390/ijms21207768
Zhang X, Qin T, Zhu Z, Hong F, Xu Y, Zhang X, et al. Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing Akt/mTOR signaling. Am J Med Sci. 2020;359(2):123-129. DOI: https://doi.org/10.1016/j.amjms.2019.11.001
Zhang Y, Sun T, Li M, Lin Y, Liu Y, Tang S, et al. Ivermectin-Induced Apoptotic Cell Death in Human SH-SY5Y Cells Involves the Activation of Oxidative Stress and Mitochondrial Pathway and Akt/mTOR-Pathway-Mediated Autophagy. Antioxidants. 2022; 11(5): 908. DOI: https://doi.org/10.3390/antiox11050908
Diao H, Cheng N, Zhao Y, Xu H, Dong H, Thamm DH, et al. Ivermectin inhibits canine mammary tumor growth by regulating cell cycle progression and WNT signaling. BMC vet res. 2019; 15(1): 1-10. DOI: https://doi.org/10.1186/s12917-019-2026-2
Park H, Song G, and Lim W. Ivermectin-induced programmed cell death and disruption of mitochondrial membrane potential in bovine mammary gland epithelial cells. Pestic Biochem Physiol. 2020; 163: 84-93. DOI: https://doi.org/10.1016/j.pestbp.2019.10.011
Liu J, Zhang K, Cheng L, Zhu H, and Xu T. Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin. Drug Des Devel Ther. 2020: 285-296. DOI: https://doi.org/10.2147/DDDT.S237393
Antoszczak M. A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Europ J Med Chem. 2019; 166: 48-64. DOI: https://doi.org/10.1016/j.ejmech.2019.01.034
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Europ J Med Chem. 2019; 164: 366-377. DOI: https://doi.org/10.1016/j.ejmech.2018.12.057
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018; 5(2): 77-106. DOI: https://doi.org/10.1016/j.gendis.2018.05.001
Trayes KP, and Cokenakes SE. Breast cancer treatment. Am Fam Physician. 2021; 104(2): 171-178. PMID: 34383430
Kwon Y-J, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, et al. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol Cancer Ther. 2015; 14(8): 1824-1836. DOI: https://doi.org/10.1158/1535-7163.MCT-14-0980-T
Sahebi R, Akbari N, Bayat Z, Rashidmayvan M, Mansoori A, Beihaghi M. A Summary of Autophagy Mechanisms in Cancer Cells. Research in Biotechnology and Environmental Science. 2022; 1(1): 28-35. https://rbes.rovedar.com/article_160846.html
Hashimoto H, Messerli SM, Sudo T, and Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther. 2009; 3(6): 243-246. PMID: 22495656
Draganov D, Gopalakrishna-Pillai S, Chen YR, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015; 5(1): 1-17. DOI: https://doi.org/10.1038/srep16222
Nambara S, Masuda T, Nishio M, Kuramitsu S, Tobo T, Ogawa Y, et al. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget. 2017; 8(64): 107666. DOI: https://doi.org/10.18632/oncotarget.22587
Zanconato F, Cordenonsi M, Piccolo S, YAP, and TAZ. a signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019; 19(8): 454-464. DOI: https://doi.org/10.1038/s41568-019-0168-y
Melotti A, Mas C, Kuciak M, Lorente‐Trigos A, Borges I, and Ruiz i Altaba A. The river blindness drug I vermectin and related macrocyclic lactones inhibit WNT‐TCF pathway responses in human cancer. EMBO Mol Med. 2014; 6(10): 1263-1278. DOI: https://doi.org/10.15252/emmm.201404084
Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci. 2016; 113(1): 71-80. DOI: https://doi.org/10.1073/pnas.1517188113
Intuyod K, Hahnvajanawong C, Pinlaor P, and Pinlaor S. Antiparasitic drug ivermectin exhibits potent anticancer activity against gemcitabine-resistant cholangiocarcinoma in vitro. Anticancer Res. 2019; 39(9): 4837-4843. DOI: https://doi.org/10.21873/anticanres.13669
Paner GP, Stadler WM, Hansel DE, Montironi R, Lin DW, and Amin MB. Updates in the eighth edition of the tumor-node-metastasis staging classification for urologic cancers. Eur Urol. 2018; 73(4): 560-569. DOI: https://doi.org/10.1016/j.eururo.2017.12.018
Shi J, Zhao L, Gao Y, Niu M, Yan M, Chen Y, et al. Associating the risk of three urinary cancers with obesity and overweight: an overview with evidence mapping of systematic reviews. Syst Rev. 2021;10:1-13. DOI: https://doi.org/10.1186/s13643-021-01606-8
Zhu M, Li Y, and Zhou Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem Biophys Res Commun. 2017; 492(3): 373-378. DOI: https://doi.org/10.1016/j.bbrc.2017.08.097
Tung C-L, Chao W-Y, Li YZ, Shen CH, Zhao PW, Chen SH, et al. Ivermectin induces cell cycle arrest and caspase-dependent apoptosis in human urothelial carcinoma cells. Int J Med Sci. 2022; 19(10): 1567-1575. DOI: https://doi.org/10.7150/ijms.76623
Nappi L, Aguda AH, Al Nakouzi N, Lelj-Garolla B, Beraldi E, Lallous N, et al. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. J Clin Investig. 2020; 130(2): 699-714. DOI: https://doi.org/10.1172/JCI130819
Saxena N, Beraldi E, Fazli L, Somasekharan SP, Adomat H, Zhang F, et al. Androgen receptor (AR) antagonism triggers acute succinate‐mediated adaptive responses to reactivate AR signaling. EMBO Mol Med. 2021; 13(5): e13427. DOI: https://doi.org/10.15252/emmm.202013427
Ebrahim H, Fisha T, Debash H, and Bisetegn H. Patterns of Bone Marrow Confirmed Malignant and Non-Malignant Hematological Disorders in Patients with Abnormal Hematological Parameters in Northeast Ethiopia. J Blood Med. 2022: 51-60. DOI: https://doi.org/10.2147/JBM.S346091
Sharmeen S, Skrtic M, Sukhai MA, Hurren R, Gronda M, Wang X, et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Am J Hematol. 2010; 116(18): 3593-3603. DOI: https://doi.org/10.1182/blood-2010-01-262675
Wang J, Xu Y, Wan H, and Hu J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 2018; 497(1): 241-247. DOI: https://doi.org/10.1016/j.bbrc.2018.12.114
Gallardo F, Mariamé B, Gence R, and Tilkin-Mariamé AF. Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth. Drug Des Devel Ther. 2018: 2805-2814. DOI: https://doi.org/10.2147/DDDT.S172538
Singh R, Letai A, and Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019; 20(3): 175-193. DOI:10.1038/s41580-018-0089-8
Lossi L. The concept of intrinsic versus extrinsic apoptosis. Biochem J. 2022; 479(3): 357-384. DOI:10.1042/BCJ20210854
Zhang P, Zhang Y, Liu K, Liu B, Xu W, Gao J, et al. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif. 2019; 52(2): e12543. DOI: https://doi.org/10.1111/cpr.12543
Zhou S, Wu H, Ning W, Wu X, Xu X, Ma Y, et al. Ivermectin has new application in inhibiting colorectal cancer cell growth. Front Pharmacol. 2021: 2145. DOI: https://doi.org/10.3389/fphar.2021.717529
Liu Y, Fang S, Sun Q, and Liu B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 2016; 480(3): 415-421. DOI: https://doi.org/10.1016/j.bbrc.2016.10.064
Wen X, and Klionsky DJ. At a glance: A history of autophagy and cancer. Semin Cancer Biol. 2020: Elsevier. DOI: https://doi.org/10.1016/j.semcancer.2019.11.005
Yun CW, and Lee SH. The roles of autophagy in cancer. Int J Mol Sci. 2018; 19(11): 3466. DOI: https://doi.org/10.3390/ijms19113466
46. Li X, He S, and Ma B. Autophagy and autophagy-related proteins in cancer. Mol cancer. 2020; 19(1): 1-16. DOI: https://doi.org/10.1186/s12943-019-1085-0
Chao X, Qian H, Wang S, Fulte S, and Ding WX. Autophagy and
liver cancer. Clin Mol Hepatol. 2020; 26(4): 606. DOI:10.3350/cmh.2020.0169
Babaei G, Aziz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother. 2021; 133: 110909. DOI:10.1016/j.biopha.2020.110909
Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng X, et al. Autophagy and its role in gastric cancer. Clin Chim Acta. 2019; 489: 10-20. DOI:10.1016/j.cca.2018.11.028
Deng F, Xu Q, Long J, and Xie H. Suppressing ROS‐TFE3‐dependent autophagy enhances ivermectin‐induced apoptosis in human melanoma cells. J Cell Biochem. 2019; 120(2): 1702-1715. DOI: DOI:10.1002/jcb.27490
51. Liu J, Liang H, Chen C, Wang X, Qu F, Wang H, et al. Ivermectin induces autophagy-mediated cell death through the AKT/mTOR signaling pathway in glioma cells. Biosci Rep. 2019; 39: 12. DOI:10.1042/BSR20192489
Sahebi R, Akbari N, Bayat Z, Rashidmayvan M, Mansoori A, and Beihaghi M. A Summary of Autophagy Mechanisms in Cancer Cells. Rev Environ Sci Biotechnol. 2022; 1(1): 28-35. Available at: https://rbes.rovedar.com/article_160846_79aec0388b8f7c49907bc94b45707f1d.pdf
Yu P, Zhang X, Liu N, Tang L, Peng C, and Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021; 6(1): 128. DOI:10.1038/s41392-021-00507-5
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 2022; 19(9): 971-992. DOI:10.1038/s41423-022-00905-x
Burdette BE, Esparza AN, Zhu H, and Wang S. Gasdermin D in pyroptosis. Acta Pharm Sin B. 2021; 11(9): 2768-2782. DOI: https://doi.org/10.1016/j.apsb.2021.02.006
Han SJ, Lovaszi M, Kim M, D'Agati V, Haskó G, and Lee HT. P2X4 receptor exacerbates ischemic AKI and induces renal proximal tubular NLRP3 inflammasome signaling. FASEB. 2020; 34(4): 5465. DOI: https://doi.org/10.1096/fj.201903287R
Antoszczak M, Markowska A, Markowska J, and Huczyński A. Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol. 2020; 866: 172784. DOI: https://doi.org/10.1016/j.ejphar.2019.172784
Juarez M, Schcolnik-Cabrera A, Dominguez-Gomez G, Chavez-Blanco A, Diaz-Chavez J, and Duenas-Gonzalez A. Antitumor effects of ivermectin at clinically feasible concentrations support its clinical development as a repositioned cancer drug. Cancer Chemother Pharmacol. 2020; 85: 1153-1163. DOI: https://doi.org/10.1007/s00280-020-04041-z
Song D, Liang H, Qu B, Li Y, Liu J, Zhang Y, et al. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J Cell Biochem. 2019; 120(1): 622-633. DOI: https://doi.org/10.1002/jcb.27420
Yin J, Park G, Lee JE, Choi EY, Park JY, Kim T-H, et al. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating
miR-21 biogenesis. Brain. 2015; 138(9): 2553-2570. DOI: https://doi.org/10.1093/brain/awv167