The Use of Curcumin in the Treatment of Colorectal, Breast, Lung, and Prostate Cancers: An In Vivo study Update
Main Article Content
Abstract
Introduction: Cancer is one of the most prevalent and complex diseases with diverse etiology and manifestations. Curcumin is a bioactive compound found in turmeric and could have therapeutic potential for cancer due to its antitumor properties. Curcumin's properties in treating various types of cancer have been reviewed in this systematic review based on in vivo studies.
Materials and methods: This systematic review focused on in vivo studies examining Curcumin's anti-cancer properties across a broad range of cancer types. PubMed, Google Scholar, and Scopus databases were searched to identify relevant articles. Researchers selected studies evaluating Curcumin's effects on cancer progression and development based on animal models. Final analyses were conducted on the data obtained from the selected articles. The included studies were published between 2000 and 2023.
Results: The current systematic review was based on 53 articles out of 412 eligible studies, which were selected from 770 articles of literature screened from 2000 to 2023. Based on this review, in vivo studies have demonstrated that curcumin can potentially treat various cancers. There is evidence that curcumin has significant anti-cancer properties, including tumor growth inhibition, metastasis inhibitory activity, and angiogenesis. Several studies have demonstrated the versatility and potential of curcumin in treating cancer.
Conclusion: Curcumin has considerable cancer treatment potential, based on the in-vivo studies. For curcumin to be considered an effective cancer therapy, further clinical research is needed between preclinical and clinical trials.
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018; 68(1): 7-30. DOI: 10.3322/caac.21442
Qasemi A, Lagzian M, Bayat Z. Cancer and COVID-19: a double burden on the healthcare system. Iran Red Crescent Med J. 2023; 25(2): e2662. DOI: 10.32592/ircmj.2023.25.2.2662
Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018; 834: 188-196. DOI: 10.1016/j.ejphar.2018.07.034
Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anti-cancer Agents Med Chem. 2023; 23(15):1710-1721. DOI: 10.2174/1871520623666230529141544
Sadr S, Borji H. Echinococcus granulosus as a promising therapeutic agent against triple-negative breast cancer. Curr Cancer Ther Rev. 2023; 19(4): 292-297. DOI: 10.2174/1573394719666230427094247
Sadr S, Yousefsani Z, Simab PA, Alizadeh AJR, Lotfalizadeh N, Borji H. Trichinella spiralis as a potential antitumor agent: An update. World Vet J. 2023; 13(1): 65-74. DOI: 10.54203/scil.2023.wvj7
Asouli A, Sadr S, Mohebalian H, Borji H. Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562. Acta Parasitol. 2023: 1-8. DOI: 10.1007/s11686-023-00680-3
Ghaniei A, Ghafouri SA, Sadr S, Hassanbeigi N. Investigating the preventive effect of herbal medicine (Allium sativum, Artemisia annua, and Quercus infectoria) against coccidiosis in broiler chickens. J World's Poult Res. 2023; 13(1): 96-102. DOI: 10.36380/jwpr.2023.10
Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anti-cancer agents. Int J Mol Sci. 2019; 20(5): 1033. DOI: 10.3390/ijms20051033
Vipasha S, Hardeep K, Tarun K, Tullika M. Traditional Indian herb Catharanthus roseus used as cancer treatment: a review. Int J Pharmacogn Phytochem Res. 2016; 8(12): 1926-1928. Available at: https://www.semanticscholar.org/paper/Traditional-Indian-Herb-Cathranthus-roseus-Used-as-Vipasha-Hardeep/caa1ced679c15e707b7eecae267515cd90f984f2
Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, et al. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother. 2021; 135: 111078. DOI: 10.1016/j.biopha.2020.111078
Eckelbarger JD, Wilmot JT, Epperson MT, Thakur CS, Shum D, Antczak C, et al. Synthesis of antiproliferative Cephalotaxus esters and their evaluation against several human hematopoietic and solid tumor cell lines: uncovering differential susceptibilities to multidrug resistance. Chem-Eur J. 2008; 14(14): 4293-4306. DOI: 10.1002/chem.200701998
Saeed M, Sadr S, Gharib A, Lotfalizadeh N, Hajjafari A, Simab PA, et al. Phytosomes: A Promising Nanocarrier for Enhanced Delivery of Herbal Compounds in Cancer Therapy. J Lab Anim Res. 2022;1(1): 26-32. DOI: 10.58803/jlar.v1i1.8
Ochwang'i DO, Kimwele CN, Oduma JA, Gathumbi PK, Mbaria JM, Kiama SG. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol. 2014; 151(3): 1040-1055. DOI: 10.1016/j.jep.2013.11.051
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, et al. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym. 2023: 120718. DOI: 10.1016/j.carbpol.2023.120718
Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB, et al. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol. 2014; 7(6): 2818.
Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097278/
Salem M, Rohani S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv. 2014; 4(21):10815-29. DOI: 10.1039/c3ra46396f
Ipar VS, Dsouza A, Devarajan PV. Enhancing curcumin oral bioavailability through nanoformulations. Eur J Drug Metab Pharmacokinet. 2019; 44: 459-480. DOI: 10.1007/s13318-019-00545-z
Zhao Y-Z, Lu C-T, Zhang Y, Xiao J, Zhao Y-P, Tian J-L, et al. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery. Int J Pharm. 2013; 454(1): 302-309. DOI: 10.1016/j.ijpharm.2013.06.052
Sun M, Su X, Ding B, He X, Liu X, Yu A, et al. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine. 2012; 7(7):1085-1100. DOI: 10.2217/nnm.12.80
Drbohlavova J, Chomoucka J, Adam V, Ryvolova M, Eckschlager T, Hubalek J, et al. Nanocarriers for anti-cancer drugs-new trends in nanomedicine. Curr Drug Metab. 2013; 14(5): 547-564. DOI: 10.2174/1389200211314050005
Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-based nanoformulations: A promising adjuvant towards cancer treatment. Molecules. 2022; 27(16): 5236. DOI: 10.3390/molecules27165236
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015; 17: 1341-56. DOI: 10.1208/s12248-015-9811-z
Flora G, Gupta D, Tiwari A. Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst. 2013; 30(4). DOI: 10.1615/CritRevTherDrugCarrierSyst.2013007236
Hassanizadeh S, Shojaei M, Bagherniya M, Orekhov AN, Sahebkar A. Effect of nano‐curcumin on various diseases: A comprehensive review of clinical trials. Biofactors. 2023. DOI: 10.1002/biof.1932
Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, et al. Benefits of curcumin in brain disorders. BioFactors. 2019; 45(5): 666-689. DOI: 10.1002/biof.1533
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin II: evidence from in vivo studies. Nutrients. 2019; 12(1): 58. DOI: 10.3390/nu12010058
Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer's disease-merits and limitations. Curr Med Chem. 2013; 20(32) :3955-3985. DOI: 10.2174/09298673113209990210
Bagherniya M, Darand M, Askari G, Guest PC, Sathyapalan T, Sahebkar A. The clinical use of curcumin for the treatment of rheumatoid arthritis: A systematic review of clinical trials. Studies Biomark New Targets Aging Res Iran: Focus Turmeric Curcumin. 2021: 251-263. DOI: 10.1007/978-3-030-56153-6_15
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des Devel Ther. 2021: 4503-4525. DOI: 10.2147/DDDT.S327378
Gandapu U, Chaitanya R, Kishore G, Reddy RC, Kondapi AK. Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro. PLoS One. 2011; 6(8): e23388. DOI: 10.1371/journal.pone.0023388
Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr. 2001; 131(11): 2932-2935. DOI: 10.1093/jn/131.11.2932
Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr. 2010; 30: 173-199. DOI: 10.1146/annurev.nutr.012809.104755
Jagetia GC, Aggarwal BB. "Spicing up" of the immune system by curcumin. J Clin Immunol. 2007; 27: 19-35. DOI: 10.1007/s10875-006-9066-7
Rahmani AH, Al Zohairy MA, Aly SM, Khan MA. Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. BioMed Res Int. 2014. DOI: 10.1155/2014/761608
Gupta MK, Vadde R, Sarojamma V. Curcumin-a novel therapeutic agent in the prevention of colorectal cancer. Curr Drug Metab. 2019;20(12):977-987. DOI: 10.2174/1389200220666191007153238
Mbese Z, Khwaza V, Aderibigbe BA. Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers. Molecules. 2019; 24(23): 4386. DOI: 10.3390/molecules24234386
Labban L. Medicinal and pharmacological properties of Turmeric (Curcuma longa): A review. Int J Pharm Biomed Sci. 2014; 5(1): 17-23. Available at:
Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydro-curcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007; 28(8): 1765-1773. DOI: 10.1093/carcin/bgm123
Chen WF, Deng SL, Zhou B, Yang L, Liu ZL. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic. 2006; 40(3): 526-535. DOI: 10.1016/j.freeradbiomed.2005.09.008
Shanmugam MK, Rane G, Kanchi MM, Arfuso F, Chinnathambi A, Zayed M, et al. The multi-faceted role of curcumin in cancer prevention
and treatment. Molecules. 2015; 20(2): 2728-2769. DOI: 10.3390/molecules20022728
Qadir MI, Naqvi STQ, Muhammad SA, Qadir M, Naqvi ST. Curcumin: a polyphenol with molecular targets for cancer control. Asian Pac J Cancer Prev. 2016; 17(6): 2735-2739. PMID: 27356682
Shanmugam MK, Kannaiyan R, Sethi G. Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr and Cancer. 2011; 63(2): 161-173. DOI: 10.1080/01635581.2011.523502
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease. 2007:1-75. DOI: 10.1007/978-0-387-46401-5_1
Kunati SR, Yang S, William BM, Xu Y. An LC-MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J Pharm Biomed Anal. 2018; 156:189-198. DOI: 10.1016/j.jpba.2018.04.034
Zhao S, Pi C, Ye Y, Zhao L, Wei Y. Recent advances of analogues of curcumin for treatment of cancer. Eur J Med Chem. 2019; 180: 524-535. DOI: 10.1016/j.ejmech.2019.07.034
Krall N, Da Cruz FP, Boutureira O, Bernardes GJ. Site-selective protein-modification chemistry for basic biology and drug development. Nature Chemistry. 2016; 8(2): 103-113. DOI: 10.1038/nchem.2393
Liu C, Yang X, Wu W, Long Z, Xiao H, Luo F, et al. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocolloids. 2018; 77: 834-842. DOI: 10.1016/j.foodhyd.2017.11.027
Ranjan AP, Mukerjee A, Helson L, Gupta R, Vishwanatha JK. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis. Anti-cancer Res. 2013; 33(9): 3603-3609. PMID: 24023285
Golombick T, Diamond TH, Manoharan A, Ramakrishna R. The effect of curcumin (as Meriva) on absolute lymphocyte count (ALC), NK cells and T cell populations in patients with stage 0/1 chronic lymphocytic leukemia. 2015; 6 (7): 566-571. DOI: 10.4236/jct.2015.67061
Bolger GT, Licollari A, Tan A, Greil R, Vcelar B, Greil-Ressler S, et al. Pharmacokinetics of liposomal curcumin (Lipocurc™) infusion: Effect of co-medication in cancer patients and comparison with healthy individuals. Cancer Chemother Pharmacol. 2019; 83: 265-275. DOI: 10.1007/s00280-018-3730-5
Ghalaut VS, Sangwan L, Dahiya K, Ghalaut P, Dhankhar R, Saharan R. Effect of imatinib therapy with and without turmeric powder on nitric oxide levels in chronic myeloid leukemia. J Oncol Pharm Pract. 2012; 18(2):186-190. DOI: 10.1177/1078155211416530
Loftus LV, Amend SR, Pienta KJ. Interplay between cell death and cell proliferation reveals new strategies for cancer therapy. Int J Mol Sci. 2022; 23(9): 4723. DOI: 10.3390/ijms23094723
Tuorkey M. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv Med Appl Sci. 2014; 6(4): 139-146. DOI: 10.1556/imas.6.2014.4.1
Zhou Q-M, Sun Y, Lu Y-Y, Zhang H, Chen Q-L, Su S-B. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int. 2017; 17(1):1-13. DOI: 10.1186/s12935-017-0453-3
Obaidi I, Cassidy H, Ibanez Gaspar V, McCaul J, Higgins M, Halász M, et al. Curcumin sensitizes kidney cancer cells to TRAIL-induced apoptosis via ROS mediated activation of JNK-CHOP pathway and upregulation of DR4. Biology. 2020; 9(5): 92. DOI: 10.3390/biology9050092
Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol. 2008; 76(11): 1340-1351. DOI: 10.1016/j.bcp.2008.07.031
Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors. 2013; 39(1): 56-68. DOI: 10.1002/biof.1068
Hahn YI, Kim SJ, Choi BY, Cho KC, Bandu R, Kim KP, et al. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep. 2018; 8(1): 6409. DOI: 10.1038/s41598-018-23840-2
Lee W-H, Loo C-Y, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 2014; 11(8): 1183-1201. DOI: 10.1517/17425247.2014.916686
Monteiro F, Shetty SS. Natural antioxidants as inhibitors of pyruvate kinase M2 in Warburg phenotypes. J Herbal Med. 2023; 42: 100750. DOI: 10.1016/j.hermed.2023.100750
Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, et al. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep. 2018; 8(1): 8323. DOI: 10.1038/s41598-018-25524-3
Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, et al. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules. 2021; 11(3): 392. DOI: 10.3390/biom11030392
Lee JY, Lee YM, Chang GC, Yu SL, Hsieh WY, Chen JJ, et al. Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: the versatile adjuvant for gefitinib therapy. PloS One. 2011; 6(8): e23756. DOI: 10.1371/journal.pone.0023756
Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, Su SF, et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res. 2008; 68(18): 7428-7438. DOI: 10.1158/0008-5472.CAN-07-6734
Hackler Jr L, Ózsvári B, Gyuris M, Sipos P, Fábián G, Molnár E, et al. The curcumin analog C-150, influencing NF-κB, UPR and Akt/Notch pathways has potent anti-cancer activity in vitro and in vivo. PloS One. 2016;11(3):e0149832. DOI: 10.1371/journal.pone.0149832
Chen CC, Sureshbabul M, Chen HW, Lin YS, Lee JY, Hong QS, et al. Curcumin suppresses metastasis via Sp-1, FAK inhibition, and E-cadherin upregulation in colorectal cancer. Evid based Complement Altern Med. 2013. 541695. DOI: 10.1155/2013/541695
Choe SR, Kim YN, Park CG, Cho KH, Cho DY, Lee HY. RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Exp and Mol Med. 2018; 50(4): 1-10. DOI: 10.1038/s12276-018-0078-1
Zhou D-Y, Zhang K, Conney AH, Ding N, Cui X-X, Wang H, et al. Synthesis and evaluation of curcumin-related compounds containing benzyl piperidone for their effects on human cancer cells. Chem and Pharma Bull. 2013; 61(11): 1149-1155. DOI: 10.1248/cpb.c13-00507
Fan X, Zhu M, Qiu F, Li W, Wang M, Guo Y, et al. Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting
CD44. Inte Immunopharma. 2020; 88: 106991. DOI: 10.1016/j.intimp.2020.106991
Xu S, Jiang B, Wang H, Shen C, Chen H, Zeng L. Curcumin suppresses intestinal fibrosis by inhibition of PPARγ-mediated epithelial-mesenchymal transition. Evid Based Complementary Altern Med. 2017. DOI: 10.1155/2017/7876064
Limonta P, Moretti RM, Marzagalli M, Fontana F, Raimondi M, Montagnani Marelli M. Role of endoplasmic reticulum stress in the anti-cancer activity of natural compounds. Int JMol Sci. 2019; 20(4): 961. DOI: 10.3390/ijms20040961
Zhou T, Ye L, Bai Y, Sun A, Cox B, Liu D, et al. Autophagy and apoptosis in hepatocellular carcinoma induced by EF25-(GSH) 2: a novel curcumin analog. PloS One. 2014; 9(9): e107876. DOI: 10.1371/journal.pone.0107876
Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol. 2007; 72(1): 29-39. DOI: 10.1124/mol.106.033167
Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi H, et al. B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Int J Bio Sci. 2013; 9(8): 766. DOI: 10.7150/ijbs.5711
Deng Y, Verron E, Rohanizadeh R. Molecular mechanisms of anti-metastatic activity of curcumin. Anti-cancer Res. 2016; 36(11): 5639-5647. DOI: 10.21873/anticanres.11147
Jalili Nik M, Soltani A, Moussavi S, Ghayour‐Mobarhan M, Ferns GA, Hassanian SM, et al. Current status and future prospective of Curcumin as a potential therapeutic agent in the treatment of colorectal cancer. J Cell Physio. 2018; 233(9): 6337-6345. DOI: 10.1002/jcp.26368
Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, et al. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res. 2012;72(6):1321-1331. DOI: 10.1158/0008-5472.CAN-11-3213
Duprez J, Jonas JC. Role of activating transcription factor 3 in low glucose-and thapsigargin-induced apoptosis in cultured mouse islets. Biochem Biophys Res Commun. 2011; 415(2): 294-299. DOI: 10.1016/j.bbrc.2011.10.048
Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling
in disease. Phys rev. 2006; 86(4): 1133-1149. DOI: 10.1152/physrev.00015.2006
He L, Zhang J, Zhao J, Ma N, Kim SW, Qiao S, et al. Autophagy: the last defense against cellular nutritional stress. Adv Nutr. 2018; 9(4): 493-504. DOI: 10.1093/advances/nmy011
Ramirez MU, Hernandez SR, Soto-Pantoja DR, Cook KL. Endoplasmic reticulum stress pathway, the unfolded protein response, modulates immune function in the tumor microenvironment to impact tumor progression and therapeutic response. Int J Mol Sci. 2019; 21(1): 169. DOI: 10.3390/ijms21010169
Bartoszewska S, Collawn JF, Bartoszewski R. The role of the hypoxia-related unfolded protein response (UPR) in the tumor microenvironment. Cancers. 2022; 14(19): 4870. DOI: 10.3390/cancers14194870
Sisinni L, Pietrafesa M, Lepore S, Maddalena F, Condelli V, Esposito F, et al. Endoplasmic reticulum stress and unfolded protein response in breast cancer: the balance between apoptosis and autophagy and its role in drug resistance. Int J Mol Sci. 2019; 20(4): 857. DOI: 10.3390/ijms20040857
Kim R. Recent advances in understanding the cell death pathways activated by anti-cancer therapy. Cancer. 2005; 103(8):1551-1560. DOI: 10.1002/cncr.20947
Shakeri A, Zirak MR, Hayes AW, Reiter R, Karimi G. Curcumin and its analogues protect from endoplasmic reticulum stress: Mechanisms and pathways. Pharmacol res. 2019; 146: 104335. DOI: 10.1016/j.phrs.2019.104335
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol and therap. 2015; 52: 111-124. DOI: 10.1016/j.pharmthera.2015.05.008
Battaglia S, Maguire O, Campbell MJ. Transcription factor co‐repressors in cancer biology: roles and targeting. Int J Cancer. 2010; 126(11): 2511-2519. DOI: 10.1002/ijc.25181
Siddappa M, Wani SA, Long MD, Leach DA, Mathé EA, Bevan CL, et al. Identification of transcription factor co-regulators that drive prostate cancer progression. Sci Rep. 2020; 10(1): 20332. DOI: 10.1038/s41598-020-77055-5
Leupold J, Yang H, Colburn N, Asangani I, Post S, Allgayer H. Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene. 2007; 26(31): 4550-4562. DOI: 10.1038/sj.onc.1210234
Zannetti A, Del Vecchio S, Carriero MV, Fonti R, Franco P, Botti G, et al. Coordinate up-regulation of Sp1 DNA-binding activity and urokinase receptor expression in breast carcinoma. Cancer res. 2000; 60(6): 1546-1551. Available at: https://aacrjournals.org/cancerres/ article/60/6/1546/507319/Coordinate-Up-Regulation-of-Sp1-DNA-binding
Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C. Potential anti-cancer properties and mechanisms of action of curcumin. Anti-cancer res. 2015; 35(2): 645-651. PMID: 25667441
Lou Z, O'Reilly S, Liang H, Maher VM, Sleight SD, McCormick JJ. Down-regulation of overexpressed sp1 protein in human fibrosarcoma cell lines inhibits tumor formation. Cancer res. 2005; 65(3): 1007-1017. DOI: 10.1158/0008-5472.1007.65.3
Matès JM, Segura JA, Alonso FJ, Márquez J. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis,
and carcinogenesis. Arch toxicol. 2008; 82:273-299. DOI: 10.1007/s00204-008-0304-z
Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, et al. Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int J bio sci. 2019; 15(6): 1200. DOI: 10.7150/ijbs.33710
Aggarwal BB, Kumar A, Bharti AC. Anti-cancer potential of curcumin: preclinical and clinical studies. Anti-cancer res. 2003; 23(1/A): 363-398. PMID: 12680238
Panda AK, Chakraborty D, Sarkar I, Khan T, Sa G. New insights into therapeutic activity and anti-cancer properties of curcumin. J Exp pharmacol. 2017: 31-45. DOI: 10.2147/JEP.S70568
Termini D, Den Hartogh DJ, Jaglanian A, Tsiani E. Curcumin against prostate cancer: current evidence. Biomolecules. 2020; 10(11): 1536. DOI: 10.3390/biom10111536
Sundram V, Chauhan SC, Ebeling M, Jaggi M. Curcumin attenuates β-catenin signaling in prostate cancer cells through activation of
protein kinase D1. PloS one. 2012; 7(4): e35368. DOI: 10.1371/journal.pone.0035368
Syed V, Mak P, Du C, Balaji K. β‐catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E‐cadherin and protein kinase D1. J cell biochem. 2008; 104(1): 82-95. DOI: 10.1002/jcb.21603
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients. 2020; 12(3): 679. DOI: 10.3390/nu12030679
Chen QH. Curcumin-based anti-prostate cancer agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2015; 15(2): 138-156. DOI: 10.2174/1871520615666150116102442
Belluti S, Orteca G, Semeghini V, Rigillo G, Parenti F, Ferrari E, et al. Potent anti-cancer properties of phthalimide-based curcumin derivatives on prostate tumor cells. International journal of molecular sciences. 2018; 20(1): 28. DOI: 10.3390/ijms20010028
Vellampatti S, Chandrasekaran G, Mitta SB, Lakshmanan VK, Park SH. Metallo-curcumin-conjugated DNA complexes induces preferential prostate cancer cells cytotoxicity and pause growth of bacterial cells. Sci rep. 2018; 8(1): 14929. DOI: 10.1038/s41598-018-33369-z
Mattiuzzi C, Sanchis-Gomar F, Lippi G. Concise update on colorectal cancer epidemiology. Ann Transl Med. 2019; 7(21). DOI: 10.21037/atm.2019.07.91
Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer lett. 2001; 172(2): 111-118. DOI: 10.1016/S0304-3835(01)00655-3
Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, et al. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci rep. 2011; 31(3): 185-197. DOI: 10.1042/BSR20100065
Kunnumakkara AB, Diagaradjane P, Guha S, Deorukhkar A, Shentu S, Aggarwal BB, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to γ-radiation by targeting nuclear factor-κB-regulated gene products. Clin Cancer Res. 2008; 14(7): 2128-2136. DOI: 10.1158/1078-0432.CCR-07-4722
Houssami N, Macaskill P, Marinovich ML, Dixon JM, Irwig L, Brennan ME, et al. Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy. Eur J cancer. 2010; 46(18): 3219-3232. DOI: 10.1016/j.ejca.2010.07.043
Harness JK, Davies K, Via C, Brooks E, Zambelli-Weiner A, Shah C, et al. Meta-analysis of local invasive breast cancer recurrence after electron intraoperative radiotherapy. Ann Surg Oncol. 2018; 25: 137-147. DOI: 10.1245/s10434-017-6130-x
Ramachandran C, Fonseca HB, Jhabvala P, Escalon EA, Melnick SJ. Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer lett. 2002; 184(1): 1-6. DOI: 10.1016/S0304-3835(02)00192-1
Liu Q, Loo WT, Sze S, Tong Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine. 2009; 16(10): 916-922. DOI: 10.1016/j.phymed.2009.04.008
Rauf A, Imran M, Orhan IE, Bawazeer S. Health perspectives of a bioactive compound curcumin: A review. Trends Food Sci Technol. 2018; 74: 33-45. DOI: 10.1016/j.tifs.2018.01.016
Fabianowska-Majewska K, Kaufman-Szymczyk A, Szymanska-Kolba A, Jakubik J, Majewski G, Lubecka K. Curcumin from turmeric rhizome: A potential modulator of DNA methylation machinery in breast cancer inhibition. Nutrients. 2021; 13(2): 332. DOI: 10.3390/nu13020332
Farghadani R, Naidu R. Curcumin: modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers. 2021; 13(14): 3427. DOI: 10.3390/cancers13143427
Bachmeier BE, Mohrenz IV, Mirisola V, Schleicher E, Romeo F, Höhneke C, et al. Curcumin downregulates the inflammatory cytokines CXCL1 and-2 in breast cancer cells via NFκB. Carcinogenesis. 2008; 29(4): 779-789. DOI: 10.1093/carcin/bgm248
Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anti-cancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer invest. 2017; 35(1): 1-22. DOI: 10.1080/07357907.2016.1247166
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A promising candidate for therapeutic applications. Fron Pharmaco. 2020; 11: 487. DOI: 10.3389/fphar.2020.00487
Torre LA, Siegel RL, Jemal A. Lung cancer statisticsTransl Lung Cancer Res Subsets. 2016:1-19. DOI: 10.1007/978-3-319-24223-1_1
Memon H, Patel BM. Immune checkpoint inhibitors in non-small cell lung cancer: A bird's eye view. Life sci. 2019; 233: 116713. DOI: 10.1016/j.lfs.2019.116713
Wang J-Y, Wang X, Wang X-J, Zheng B-Z, Wang Y, Liang B. Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur Rev Med Pharmacol Sci 2018; 22(21): 7492-7499. DOI: 10.26355/eurrev_201811_16290
Li X, Ma S, Yang P, Sun B, Zhang Y, Sun Y, et al. Anti-cancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncol Lett. 2018; 16(5): 6756-6762. DOI: 10.3892/ol.2018.9488
Wu GQ, Chai KQ, Zhu XM, Jiang H, Wang X, Xue Q, et al. Anti-cancer effects of curcumin on lung cancer through the inhibition of
EZH2 and NOTCH1. Oncotarget. 2016; 7(18): 26535. DOI: 10.18632/oncotarget.8532
Wang C, Song X, Shang M, Zou W, Zhang M, Wei H, et al. Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol. 2019; 15(11): 1243-1253. DOI: 10.2217/fon-2018-0708
Smagurauskaite G, Mahale J, Brown K, Thomas AL, Howells LM. New paradigms to assess consequences of long-term, low-dose curcumin exposure in lung cancer cells. Molecules. 2020; (2): 366. DOI: 10.3390/molecules25020366
Bland AR, Bower RL, Nimick M, Hawkins BC, Rosengren RJ, Ashton JC. Cytotoxicity of curcumin derivatives in ALK positive non-small cell lung cancer. Eur J Pharmacol. 2019; 865: 172749. DOI: 10.1016/j.ejphar.2019.172749
Li X, He S, Tian Y, Weiss RM, Martin DT. Synergistic inhibition of GP130 and ERK signaling blocks chemoresistant bladder cancer cell growth. Cell signall. 2019; 63: 109381. DOI: 10.1016/j.cellsig.2019.109381
Xin J, Jue W, Huifen S, Ran R, Kai X, Xiangming T, et al. Curcumin co-treatment ameliorates resistance to gefitinib in drug-resistant NCI-H1975 lung cancer cells. J Tradit Chin Med. 2017; 37(3): 355-360. DOI: 10.1016/S0254-6272(17)30071-7
Gao X, Li X, Ho C-T, Lin X, Zhang Y, Li B, et al. Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway. Food Res Int. 2020; 129: 108854. DOI: 10.1016/j.foodres.2019.108854
Zhou GZ, Li AF, Sun Y-H, Sun GC. A novel synthetic curcumin derivative MHMM-41 induces ROS-mediated apoptosis and migration blocking of human lung cancer cells A549. Biomed Pharmacother. 2018; 103:391-398. DOI: 10.1016/j.biopha.2018.04.086
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The role of curcumin in cancer treatment. Biomedicines. 2021; 9(9): 1086. DOI: 10.3390/biomedicines9091086
Kumar A, Harsha C, Parama D, Girisa S, Daimary UD, Mao X, et al. Current clinical developments in curcumin‐based therapeutics for cancer and chronic diseases. Phytother Res 2021; 35(12): 6768-6801. DOI: 10.1002/ptr.7264
Lamb SR, Wilkinson SM. Contact allergy to tetrahydrocurcumin. Contact Dermat. 2003; 48(4): 227. DOI: 10.1034/j.1600-0536.2003.00062.x
Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC complement alter med. 2006; 6(1): 1-4. DOI: 10.1186/1472-6882-6-10
Panahi Y, Saadat A, Beiraghdar F, Nouzari SMH, Jalalian HR, Sahebkar A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: A randomized double-blind placebo-controlled trial. J Function Foods. 2014; 6:615-622. DOI: 10.1016/j.jff.2013.12.008
Hejazi J, Rastmanesh R, Taleban F, Molana S, Ehtejab G. A pilot clinical trial of radioprotective effects of curcumin supplementation in patients with prostate cancer. J Cancer Sci Ther. 2013; 5(10): 320-324. DOI: 10.4172/1948-5956.1000222
Jiao Y, Wilkinson IV J, Pietsch EC, Buss JL, Wang W, Planalp R, et al. Iron chelation in the biological activity of curcumin. Free Rad Bio Med. 2006; 40(7): 1152-1160. DOI: 10.1016/j.freeradbiomed.2005.11.003
Jiao Y, Wilkinson IV J, Di X, Wang W, Hatcher H, Kock ND, et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Am J Hematol. 2009; 113(2):462-469. DOI: 10.1182/blood-2008-05-155952
Kim DC, Ku SK, Bae JS. Anticoagulant activities of curcumin and
its derivative. BMB rep. 2012; 45(4):221-226. DOI: 10.5483/BMBRep.2012.45.4.221
Wang Z, Sun W, Huang CK, Wang L, ia MM, Cui X, et al. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes. Drug Dev Ind Pharm. 2015; 41(4): 613-616. DOI: 10.3109/03639045.2014.886697
Liu AC, Zhao LX, Lou HX. Curcumin alters the pharmacokinetics of warfarin and clopidogrel in Wistar rats but has no effect on anticoagulation or antiplatelet aggregation. Planta medica. 2013; 79(11): 971-977. DOI: 10.1055/s-0032-1328652
Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014; 35(10): 3365-3383. DOI: 10.1016/j.biomaterials.2013.12.090
Khan AA, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J nano. 2013: 2733-2744. DOI: 10.2147/IJN.S41521
Dwivedi C, Sahu R, Tiwari SP, Satapathy T, Roy A. Role of liposome in novel drug delivery system. J Drug Deliv Ther. 2014; 4(2): 116-129. DOI: 10.22270/jddt.v4i2.768
Sadr S, Poorjafari Jafroodi P, Haratizadeh MJ, Ghasemi Z, Borji H, Hajjafari A. Current status of nano‐vaccinology in veterinary medicine science. Vet Med Sci. 2023;9(5): 2294-2308. DOI: 10.1002/vms3.1221
Moballegh Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, Khanbabaei H, et al. Curcumin delivery mediated by bio-based nanoparticles: a review. Molecules. 2020; 25(3): 689. DOI: 10.3390/molecules25030689
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale res lett. 2013; 8: 1-9. DOI: 10.1186/1556-276X-8-102
Chang M, Wu M, Li H. Antitumor activities of novel glycyrrhetinic acid-modified curcumin-loaded cationic liposomes in vitro and in H22 tumor-bearing mice. Drug Deliv. 2018; 25(1): 1984-1995. DOI: 10.1080/10717544.2018.1526227
Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine in cancer: Jenny Stanford Publishing; 2017. 265-295. DOI: 10.1201/b22358-10
Tefas LR, Sylvester B, Tomuta I, Sesarman A, Licarete E, Banciu M, et al. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des Devel Ther. 2017:1605-1621. DOI: 10.2147/DDDT.S129008
Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol cancer therap. 2007; 6(4): 1276-1282. DOI: 10.1158/1535-7163.MCT-06-0556
Vetha BSS, Kim EM, Oh PS, Kim SH, Lim ST, Sohn MH, et al. Curcumin encapsulated micellar nanoplatform for blue light emitting diode induced apoptosis as a new class of cancer therapy. Macromol Res. 2019; 27(12): 1179-1184. DOI: 10.1007/s13233-019-7168-3
Biswas AK, Islam MR, Choudhury ZS, Mostafa A, Kadir MF. Nanotechnology based approaches in cancer therapeutics. Advances in Natural Sciences: Nanosci Nanotech. 2014; 5(4): 043001. DOI: 10.1088/2043-6262/5/4/043001
Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016; 21(7): 836. DOI: 10.3390/molecules21070836
Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011; 359(1):318-325. DOI: 10.1016/j.jcis.2011.03.071
Muangnoi C, Jithavech P, Ratnatilaka Na Bhuket P, Supasena W, Wichitnithad W, Towiwat P, et al. A curcumin-diglutaric acid conjugated prodrug with improved water solubility and antinociceptive properties compared to curcumin. Biosci, biotechnol, biochem. 2018; 82(8): 1301-1308. DOI: 10.1080/09168451.2018.1462694
Brahmkhatri VP, Sharma N, Sunanda P, D'Souza A, Raghothama S, Atreya HS. Curcumin nanoconjugate inhibits aggregation of N-terminal region (Aβ-16) of an amyloid beta peptide. New J Chem. 2018; 42(24): 19881-19892. DOI: 10.1039/C8NJ03541E
Meghwal M, Goswami T. Piper nigrum and piperine: an update. Phytoth Res. 2013; 27(8): 1121-1130. DOI: 10.1002/ptr.4972
Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Critical reviews in food
science and nutrition. 2007; 47(8): 735-748. DOI: https://doi.org/10.1080/10408390601062054
Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, et al. Curcumin polymers as anti-cancer conjugates. Biomaterials. 2010; 31(27): 7139-7149. DOI: 10.1016/j.biomaterials.2010.06.007
Ntoutoume GMN, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, et al. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anti-cancer drug delivery systems. Bioorganic Med Chem Lett. 2016; 26(3): 941-945. DOI: 10.1016/j.bmcl.2015.12.060
Yallapu MM, Jaggi M, Chauhan SC. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids and surfaces B: Biointerfaces. 2010; 79(1): 113-125. DOI: 10.1016/j.colsurfb.2010.03.039
Zhang L, Man S, Qiu H, Liu Z, Zhang M, Ma L, et al. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of
curcumin. Environ Toxicol Pharmacol. 2016; 48: 31-38. DOI: 10.1016/j.etap.2016.09.021
Abruzzo A, Zuccheri G, Belluti F, Provenzano S, Verardi L, Bigucci F, et al. Chitosan nanoparticles for lipophilic anti-cancer drug delivery: Development, characterization and in vitro studies on HT29 cancer cells. Colloids and Surfaces B: Biointerfaces. 2016; 145: 362-372. DOI: 10.1016/j.colsurfb.2016.05.023
Li Y, Gu Z, Zhang C, Li S, Zhang L, Zhou G, et al. Synthesis, characterization and ROS-mediated antitumor effects of palladium (II) complexes of curcuminoids. Euro J Med Chem. 2018; 144: 662-671. DOI: 10.1016/j.ejmech.2017.12.027
Abd El‐Hack ME, El‐Saadony MT, Swelum AA, Arif M, Abo Ghanima MM, Shukry M, et al. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. J Sci Food Agric. 2021; 101(14): 5747-5762. DOI: 10.1002/jsfa.11372
Ahmad MZ, Alkahtani SA, Akhter S, Ahmad FJ, Ahmad J, Akhtar MS, et al. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. Journal of drug targeting. 2016; 24(4): 273-293. DOI: 10.3109/1061186X.2015.1055570
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res. 2021; 166: 105489. DOI: 10.1016/j.phrs.2021.105489
Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020; 25(12): 2791. DOI: 10.3390/molecules25122791
Sabet S, Rashidinejad A, Melton LD, McGillivray DJ. Recent advances to improve curcumin oral bioavailability. Trends Food Sci Technol. 2021; 110:253-266. DOI: 10.1016/j.tifs.2021.02.006
Stanić Z. Curcumin, a compound from natural sources, a true scientific challenge-a review. Plant Foods Hum Nutr. 2017; 72:1-12. DOI: 10.1007/s11130-016-0590-1
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, et al. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res. 2022; 36(3): 1156-1181. DOI: 10.1002/ptr.7389
Khan S, Imran M, Butt TT, Shah SWA, Sohail M, Malik A, et al. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: new developments in reversing cancer drug resistance, rapid internalization, and improved anti-cancer
efficacy. Trends Food Sci Technol. 2018; 80: 8-22. DOI: 10.1016/j.tifs.2018.07.026
Batra H, Pawar S, Bahl D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol Res. 2019; 139: 91-105. DOI: 10.1016/j.phrs.2018.11.005
M Yallapu M, Jaggi M, C Chauhan S. Curcumin nanomedicine: a road to cancer therapeutics. Curr pharmaceut design. 2013; 19(11): 1994-2010. DOI: 10.2174/138161213805289219
Hardwick J, Taylor J, Mehta M, Satija S, Paudel KR, Hansbro PM, et al. Targeting cancer using curcumin encapsulated vesicular drug delivery systems. Curr pharmaceut design. 2021; 27(1):2-14. DOI: 10.2174/1381612826666200728151610