Bone-marrow-derived Mesenchymal Stem Cell-Based Therapy for Wound Healing

Main Article Content

Mahsa Khiyabani
Hossein Kazemi Mehrjerdi

Abstract

Skin is the largest organ in the human and animal body and serves as the first line of defense against the external environment. The present study aimed to summarize the mechanisms underlying the effect of MSCs on wound healing and describe the latest strategies to enhance their therapeutic efficacy. Wounds caused by cuts, abrasions, or burns can disrupt the skin integrity, leading to severe consequences, such as infections, scarring, and reduced mobility. Therefore, effective wound healing therapies are essential to reduce the risk of complications and improve the quality of life for patients. In recent years, mesenchymal stem cells (MSCs) have emerged as promising therapy for wound healing due to their unique properties. The MSCs are found in various tissues, including the bone marrow, and can differentiate into multiple cell types, including skin cells. Additionally, MSCs can secrete substances with anti-inflammatory, anti-fibrotic, and pro-angiogenic properties, which play a critical role in the wound healing process. The MSCs can release these substances as soluble molecules, such as growth factors and cytokines, or enclosed within membrane vesicles like microparticles and exosomes. By releasing these substances, MSCs can reduce inflammation, prevent excessive scarring, and promote the growth of new blood vessels, which are crucial for effective wound healing. The MSC-based therapies have indicated promising results for wound healing. However, the optimal dosage, route of administration, and timing of MSC-based treatments for wound healing applications are yet to be determined. Despite the great potential of bone marrow-derived MSCs to improve the healing process of damaged skin caused by wounds and burns, more research is needed to fully understand how MSCs enhance wound healing and optimize their use in clinical settings.

Article Details

How to Cite
Khiyabani, M., & Kazemi Mehrjerdi, H. (2022). Bone-marrow-derived Mesenchymal Stem Cell-Based Therapy for Wound Healing. Journal of Lab Animal Research, 1(1), 33–40. https://doi.org/10.58803/jlar.v1i1.9
Section
Review Article

References

Rodrigues M, Kosaric N, Bonham CA, and Gurtner GC. Wound healing: A cellular perspective. Physiol Rev. 2019; 99(1): 665-706. DOI: https://doi.org/10.1152/physrev.00067.2017

Nguyen AV, and Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019; 20(8): 1811. DOI: https://doi.org/10.3390/ijms20081811

Piipponen M, Li D, and Landén NX. The immune functions of keratinocytes in skin wound healing. Int J Mol Sci. 2020; 21(22): 8790. DOI: https://doi.org/10.3390/ijms21228790

Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, and Raeisi Dehkordi S. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019; 10(1): 1-20. Available at: https://stemcellres.biomedcentral.com/articles/ 10.1186/s13287-019-1212-2

Fu X, Liu G, Halim A, Ju Y, Luo Q, and Song G. Mesenchymal stem cell migration and tissue repair. Cells. 2019; 8(8): 784. DOI: https://doi.org/10.3390/cells8080784

Liu G, David BT, Trawczynski M, and Fessler RG. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem cell Rev Rep. 2020; 16: 3-32. DOI: https://doi.org/10.1007/s12015-019-09935-x

Sharma P, Kumar A, and Dey AD. Cellular therapeutics for chronic wound healing: Future for regenerative medicine. Curr Drug Targets. 2022; 23(16): 1489-1504. DOI: https://doi.org/10.2174/138945012309220623144620

Marofi F, Alexandrovna KI, Margiana R, Bahramali M, Suksatan W, Abdelbasset WK, et al. MSCs and their exosomes: A rapidly evolving approach in the context of cutaneous wounds therapy. Stem

Cell Res Ther. 2021; 12(1): 1-20. Available at: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-021-02662-6

Narauskaitė D, Vydmantaitė G, Rusteikaitė J, Sampath R, Rudaitytė A, Stašytė G, et al. Extracellular vesicles in skin wound healing. Pharmaceuticals. 2021; 14(8): 811. DOI: https://doi.org/10.3390/ph14080811

Paganelli A, Trubiani O, Diomede F, Pisciotta A, and Paganelli R. Immunomodulating profile of dental mesenchymal stromal cells: A comprehensive overview. Front Oral Health. 2021; 2: 635055. DOI: https://doi.org/10.3389/froh.2021.635055

Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Scie. 2020; 21(3): 708. DOI: https://doi.org/10.3390/ijms21030708

Someya T, and Amagai M. Toward a new generation of smart skins. Nat Biotechnol. 2019; 37(4): 382-388. DOI: https://doi.org/10.1038/s41587-019-0079-1

Tavakoli S, and Klar AS. Advanced hydrogels as wound dressings. Biomol. 2020; 10(8): 1169. Available at: https://www.mdpi.com/2218-273X/10/8/1169

Monteiro-Riviere NA. Comparative anatomy, physiology, and biochemistry of mammalian skin. Cutan Ocul Toxicol. 2020: 3-71. DOI: https://doi.org/10.1201/9781003069126-2

Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, et al. Regeneration of skin appendages and nerves: Current status and further challenges. J Translation Med. 2020; 18(1): 1-17. DOI: https://doi.org/10.1186/s12967-020-02248-5

Kim MS, Song HJ, Lee SH, and Lee CK. Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J Cosmet Dermatol. 2014; 13(1): 44-51. DOI: https://doi.org/10.1111/jocd.12073

Peate I. The skin: The largest organ of the body. Br J Healthcare Assist. 2021; 15(9): 446-451. DOI: https://doi.org/10.12968/bjha.2021.15.9.446

Cañedo-Dorantes L, and Cañedo-Ayala M. Skin acute wound healing: A comprehensive review. Int J Inflam. 2019; 2019: 3706315. DOI: https://doi.org/10.1155/2019/3706315

Visha M, and Karunagaran M. A review on wound healing. Int J Clinicopathol Correlat. 2019; 3(2): 50-59. Available at: https://www.editorialmanager.in/index.php/ijcpc/article/view/404

Hocking AM, and Gibran NS. Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010; 15: 316(14): 2213-2219. DOI: https://doi.org/10.1016/j.yexcr.2010.05.009

Wu P, Zhang B, Shi H, Qian H, and Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018; 20(3): 291-301. DOI: https://doi.org/10.1016/j.jcyt.2017.11.002

Bian D, Wu Y, Song G, Azizi R, and Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Res Ther. 2022; 13: 24. Available at: https://link.springer.com/article/10.1186/s13287-021-02697-9

Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, et al. Therapeutic mesenchymal stem/stromal cells: Value, challenges and optimization. Front Cell Dev Biol. 2022; 9: 716853. DOI: https://doi.org/10.3389/fcell.2021.716853

Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, and Gonçalves RM. Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018; 9: 2837. DOI: https://doi.org/10.3389/fimmu.2018.02837

Kular JK, Basu S, and Sharma RI. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng. 2014; 5: 1-17. DOI: https://doi.org/10.1177/2041731414557112

Dos Santos RG, Santos GS, Alkass N, Chiesa TL, Azzini GO, da Fonseca LF, et al. The regenerative mechanisms of platelet-rich plasma: A review. Cytokine. 2021; 144: 155560. DOI: https://doi.org/10.1016/j.cyto.2021.155560

Cecerska-Heryć E, Goszka M, Serwin N, Roszak M, Grygorcewicz B, Heryć R, et al. Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev. 2021; 64: 84-94. DOI: https://doi.org/10.1016/j.cytogfr.2021.11.003

Hannen R, Connelly J, Myers S, and Ojeh N. Skin tissue engineering and keratinocyte stem cell therapy. Tissue Eng. Elsevier; 2023: 491-532. DOI: https://doi.org/10.1615/critrevbiomedeng.v37.i4-5.50

Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, et al. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater. 2022; 7(7): 557-574. DOI: https://doi.org/10.1038/s41578-022-00426-z

Mao J, Chen L, Cai Z, Qian S, Liu Z, and Zhao B, et al. Advanced biomaterials for regulating polarization of macrophages in wound healing. Adv Funct Mater. 2022; 32(12): 2111003. DOI: https://doi.org/10.1002/adfm.202111003

Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, et al. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater. 2021; 126: 31-44. DOI: https://doi.org/10.1016/j.actbio.2021.03.019

Chiossone L, Conte R, Spaggiari GM, Serra M, Romei C, Bellora F, et al. Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells. 2016; 34(7): 1909-1921. DOI: https://doi.org/10.1002/stem.2369

El Baassiri M, Dosh L, Haidar H, Gerges A, Baassiri S, Leone A, et al. Nerve growth factor and burn wound healing: Update of molecular interactions with skin cells. Burns. 2022. DOI: https://doi.org/10.1016/j.burns.2022.11.001

Nguyen D, Orgill D, and Murphy G. The pathophysiologic basis for wound healing and cutaneous regeneration. Biomater Treat skin loss. 2009. p. 25-57. DOI: https://doi.org/10.1533/9781845695545.1.25

Mazini L, Rochette L, Admou B, Amal S, and Malka G. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Scie. 2020; 21(4): 1306. DOI: https://doi.org/10.3390/ijms21041306

Castano O, Pérez-Amodio S, Navarro-Requena C, Mateos-Timoneda MÁ, and Engel E. Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev. 2018; 129: 95-117. DOI: https://doi.org/10.1016/j.addr.2018.03.012

Zhu Z, Zhang X, Hao H, Xu H, Shu J, Hou Q, et al. Exosomes derived from umbilical cord mesenchymal stem cells treat cutaneous nerve damage and promote wound healing. Front Cell Neuroscie. 2022; 16: 913009. DOI: https://doi.org/10.3389/fncel.2022.913009

Stoica AE, Grumezescu AM, Hermenean AO, Andronescu E, and Vasile BS. Scar-free healing: Current concepts and future perspectives. Nanomater. 2020; 10(11): 2179. DOI: https://doi.org/10.3390/nano10112179

Elsaie ML. Update on management of keloid and hypertrophic scars: A systemic review. J Cosmet Dermatol. 2021; 20(9): 2729-2738. DOI: https://doi.org/10.1111/jocd.14310

Kandhwal M, Behl T, Singh S, Sharma N, Arora S, Bhatia S, et al. Role of matrix metalloproteinase in wound healing. Am J Transl Res. 2022; 14(7): 4391. Available at: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC9360851/

Ottoboni L, von Wunster B, and Martino G. Therapeutic plasticity of neural stem cells. Front Neurol. 2020; 11: 148. DOI: https://doi.org/10.3389/fneur.2020.00148

Terriaca S, Fiorelli E, Scioli MG, Fabbri G, Storti G, and Cervelli V, et al. Endothelial progenitor cell-derived extracellular vesicles: potential therapeutic application in tissue repair and regeneration. Int J Mol Scie. 2021; 22(12): 6375. DOI: https://doi.org/10.3390/ijms22126375

Ojeh N, Pastar I, Tomic-Canic M, and Stojadinovic O. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Scie. 2015; 16(10): 25476-25501. DOI: https://doi.org/10.3390/ijms161025476

Zomer HD and Trentin AG. Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci. 2018; 90(1): 3-12. DOI: https://doi.org/10.1016/j.jdermsci.2017.12.009

Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Centr Sci. 2017; 3(3): 163-175. DOI: https://doi.org/10.1021/acscentsci.6b00371

Lee DE, Ayoub N, and Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther. 2016; 7(1): 1-8. Available at: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-016-0303-6

Hyldig K, Riis S, Pennisi CP, Zachar V, and Fink T. Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. Int J Mol Scie. 2017; 18(6): 1167. DOI: https://doi.org/10.3390/ijms18061167

Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells–a review. Biotechnol Adv. 2018; 36(4): 1111-1126. DOI: https://doi.org/10.1016/j.biotechadv.2018.03.011

Li T, Xia M, Gao Y, Chen Y, and Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther. 2015; 15(9): 1293-1306. DOI: https://doi.org/10.1517/14712598.2015.1051528

Samadi P, Saki S, Manoochehri H, and Sheykhhasan M. Therapeutic Applications of Mesenchymal Stem Cells: A Comprehensive Review. Curr Stem Cell Res Ther. 2021; 16(3): 323-353. DOI: https://doi.org/10.2174/1574888X15666200914142709

Gong Z, Xia K, Xu A, Yu C, Wang C, and Zhu J, et al. Stem cell transplantation: a promising therapy for spinal cord injury. Curr

Stem Cell Res Ther. 2020; 15(4): 321-331. DOI: https://doi.org/10.2174/1574888X14666190823144424

Hoang DM, Pham PT, Bach TQ, Ngo AT, Nguyen QT, and Phan TT, et al. Stem cell-based therapy for human diseases. Signal Transduct

Target Ther. 2022; 7(1): 272. Available at: https://www.nature.com/articles/s41392-022-01134-4

Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther. 2022; 13(1): 429. Available at: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-022-02985-y

Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, and Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020; 11(1): 1-21. DOI: https://doi.org/10.1186/s13287-020-02001-1

Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, and Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther. 2022; 13(1): 146. Available at: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-022-02822-2

Shrestha M, Nguyen TT, Park J, Choi JU, Yook S, and Jeong J-H. Immunomodulation effect of mesenchymal stem cells in islet transplantation. Biomed Pharmacother. 2021; 142: 112042. DOI: https://doi.org/10.1016/j.biopha.2021.112042

Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021; 10(7): 1729. DOI: https://doi.org/10.3390/cells10071729

Huang J, Zhang J, Xiong J, Sun S, Xia J, and Yang L, et al. Stem cell-derived nanovesicles: a novel cell-free therapy for wound healing. Stem Cells Int. 2021; 2021: 1-14. DOI: https://doi.org/10.1155/2021/1285087

Nour S, Imani R, Chaudhry GR, and Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. J Biomed Mater Res. 2021; 109(4): 453-478. DOI: https://doi.org/10.1002/jbm.a.37105

Nooshabadi VT, Mardpour S, Yousefi‐Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, et al. The extracellular vesicles‐derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem. 2018; 119(10): 8048-8073. DOI: https://doi.org/10.1002/jcb.26726

Shafei AES, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, et al. Mesenchymal stem cell therapy: A promising cell‐based therapy for treatment of myocardial infarction. J Gene Med. 2017; 19(12): e2995. DOI: https://doi.org/10.1002/jgm.2995

Fan X-L, Zhang Y, Li X, and Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol life Sci. 2020; 77: 2771-2794. DOI: https://doi.org/10.1007/s00018-020-03454-6

El-Jawhari JJ, Ganguly P, Jones E, and Giannoudis PV. Bone marrow multipotent Mesenchymal stromal cells as autologous therapy for osteonecrosis: effects of age and underlying causes. Bioeng. 2021; 8(5): 69. DOI: https://doi.org/10.3390/bioengineering8050069

Lee BC, and Kang KS. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res Ther. 2020; 11(1): 1-10. DOI: https://doi.org/10.1186/s13287-020-01920-3

Fui LW, Lok MPW, Govindasamy V, Yong TK, Lek TK, and Das AK. Understanding the multifaceted mechanisms of diabetic wound healing and therapeutic application of stem cells conditioned medium in the healing process. J Tissue Eng Regen Med. 2019; 13(12): 2218-2233. DOI: https://doi.org/10.1002/term.2966

Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L, et al. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Translat Med. 2015; 13: 1-14. Available at: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-015-0580-3

Klinker MW, and Wei C-H. Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J Stem cell. 2015; 7(3): 556. DOI: https://doi.org/10.4252/wjsc.v7.i3.556

Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tiss Eng Regen Med. 2019; 13(9): 1738-1755. DOI: https://doi.org/10.1002/term.2914

Yang J, Chen Z, Pan D, Li H, and Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomed. 2020: 5911-5926. DOI: https://doi.org/10.2147/IJN.S249129

Yang L, Ma J, Gan S, Chu S, Maldonado M, and Zhou J, et al. Platelet poor plasma gel combined with amnion improves the therapeutic effects of human umbilical cord‑derived mesenchymal stem cells on wound healing in rats. Mol Med Rep. 2017; 16(3): 3494-3502. DOI: https://doi.org/10.3892/mmr.2017.6961

Kean TJ, Lin P, Caplan AI, and Dennis JE. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cell Int. 2013; 2013. 732742. DOI: https://doi.org/10.1155/2013/732742

Abdul Kareem N, Aijaz A, and Jeschke MG. Stem cell therapy for burns: story so far. Biol Targ Ther. 2021: 379-397. DOI: https://doi.org/10.2147/BTT.S259124

Fiume E, Barberi J, Verné E, and Baino F. Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J Funct Biomater. 2018; 9(1): 24. DOI: https://doi.org/10.3390/jfb9010024

Rousselle P, Braye F, and Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2019; 146: 344-365. DOI: https://doi.org/10.1016/j.addr.2018.06.019

Zschaler J, Schlorke D, and Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol. 2014; 34(5). 433-454. Available at: https://pubmed.ncbi.nlm.nih.gov/25404048/

Grada A, Mervis J, and Falanga V. Research techniques made simple: animal models of wound healing. J Invest Dermatol. 2018; 138(10): 2095-2105. e1. DOI: https://doi.org/10.1016/j.jid.2018.08.005

Parnell LK, and Volk SW. The evolution of animal models in wound healing research: 1993–2017. Adv Wound Care. 2019; 8(12): 692-702. DOI: https://doi.org/10.1089/wound.2019.1098

Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther. 2005; 5(7): 879-892. DOI: https://doi.org/10.1517/14712598.5.7.879

Drela K, Stanaszek L, Nowakowski A, Kuczynska Z, and Lukomska B. Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cells Int. 2019; 2019. 7012692. DOI: https://doi.org/10.1155/2019/7012692