Experimental Animal Models of Human Depression: Understanding the Mechanism of Anti-depressant Agents

Main Article Content

Bharti Pradhan
Trilochan Satapathy

Abstract

Experimental animal models are considered an important scientific tool used to understand the pathogenesis of depression and the mechanism of anti-depressant agents. Human depression is a unique and complex process of multifactorial etiologies. The research-based evidence suggested that a functional deficiency of norepinephrine (NE), 5-hydroxy tryptamine (5-HT), and other neurotransmitters result in depression. A mood alteration disease associated with neurotransmitter dysfunction or psychological stress. There are numerous experimental animal models available to screen antidepressant drugs, but their precise pathophysiology is not entirely well-known. The present review focused on depression assay studies that used a variety of experimental models, including acute stress models such as the forced swim test, models of prolonged physical or social stress such as social defeat, genetic models of secondary depression, and other experiments meant to clarify the mechanisms of antidepressant medications. 

Article Details

How to Cite
Pradhan, B., & Satapathy, T. (2024). Experimental Animal Models of Human Depression: Understanding the Mechanism of Anti-depressant Agents . Journal of Lab Animal Research, 3(2), 6–16. https://doi.org/10.58803/jlar.v3i2.40
Section
Review Article

References

Kessler RC, Berglund P, and Demler O. Mood disorders: Bipolar and major depressive disorders. JAMA. 2003; 289(23): 3095-105. DOI: 10.1001/jama.289.23.3095

Cuellar AK, Johnson SL, and Winters R. Distinctions between bipolar and unipolar depression. Clin Psychol Rev. 2005;25(3): 307-339. DOI: 10.1016/j.cpr.2004.12.002

Grover S, and Adarsh H. A comparative study of prevalence of mixed features in patients with unipolar and bipolar depression. Asian J Psychiatr. 2023; 81: 103439. DOI: 10.1016/j.ajp.2022.103439

Sultana S, Muhammad F, and Chowdhury AB. Women's depression: Before or after marriage, when women are more depressed. Open Psychol J. 2023; 16: e187435012212221. DOI: 10.2174/18743501-v16-e230130-2022-47

Liu Y, Zhao J, and Guo W. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Front Psychol. 2018; 9: 2201. DOI: 10.3389/fpsyg.2018.02201

Fasipe OJ. Neuropharmacological classification of antidepressant agents based on their mechanisms of action. Arch Med Health Sci. 2018; 6(1): 81-94. Available at: https://journals.lww.com/armh/ fulltext/2018/06010/neuropharmacological_classification_of.15.aspx

Nomura S, Shimizu J, Kinjo M, Kametani H, and Nakazawa T. A new behavioral test for antidepressant drugs. Eur J Pharmacol. 1982; 83(3-4): 171-175. DOI: 10.1016/0014-2999(82)90248-5

Hasler G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians?. World Psychiatry. 2010; 9(3):155-161. DOI: 10.1002/j.2051-5545.2010.tb00298.x

VanItallie TB. Stress: A risk factor for serious illness. Metabolism. 2002; 51(6 Suppl 1):40-45. DOI: 10.1053/meta.2002.33191

Qiu W, Cai X, Zheng C, Qiu S, Ke H, and Huang Y. Update on the relationship between depression and neuroendocrine metabolism. Front Neurosci. 2021; 15: 728810. DOI: 10.3389/fnins.2021.728810

Trifu SI, Drăgan-Serban FI, and Jianu EV. Neurotransmitters, aeromodellers, anatomical structures involved in psychiatric pathologies. Recent Pat Endocr Metab Immune Drug Discov. 2021; 147: 144-174.

Rosso M, Wirz R, Loretan AV, Sutter NA, da Cunha CTP, Jaric I, et al. Reliability of common mouse behavioural tests of anxiety: A systematic review and meta-analysis on the effects of anxiolytics. Neurosci Biobehav Rev. 2022; 143: 104928. DOI: 10.1016/j.neubiorev.2022.104928

Sorregotti T, Mendes-Gomes J, Rico JL, Rodgers RJ, Nunes-de-Souza RL. Ethopharmacological analysis of the open elevated plus-maze in mice. Behav Brain Res. 2013. 246: 76-85. DOI: 10.1016/j.bbr.2013.02.035

S Pellow, Chopin P, Sandra E, Briley M. Validation of open arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985; 14(3): 149-167. DOI: 10.1016/0165-0270(85)90031-7

Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology. 1987; 92(2): 180-185. DOI: 10.1007/BF00177912

Walf AA, and Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007; 2(2): 322-328. Available at: https://www.nature.com/articles/nprot.2007.44

Ari C, D'Agostino DP, Diamond DM, Kindy M, Park C, and Kovács Z . Elevated plus maze test combined with video tracking software to investigate the anxiolytic effect of exogenous ketogenic supplements. J Vis Exp. 2019; 143: e58396. DOI: 10.3791/58396

Bogdanova OV, Kanekar S, D'Anci KE, and Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav. 2013; 118: 227-239. DOI: 10.1016/j.physbeh.2013.05.012

Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp. 2015; 97: e52587. DOI: 10.3791/52587

Slattery DA, and Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc. 2012; 7(6): 1009-1014. DOI: 10.1038/nprot.2012.044

Cryan JF, Mombereau C, and Vassout A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005; 29(4-5): 571-625. DOI: 10.1016/j.neubiorev.2005.03.009

Rolim HM, Freitas RM, and Santos-Magalhães NS. Antidepressant-like activity of liposomal formulation containing nimodipine treatment in the tail suspension test, forced swim test and MAOB activity in mice. Brain Res. 2016; 1646: 235-240. DOI: 10.1016/j.brainres.2016.06.004

Chandel JP, and Prasad S. Anti-depressant effects of natural and micropropagated bacopa monnieri (L) plant extracts. Res Rev J Toxicol. 2021; 11(2): 17-21.

Schneider T, and Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology. 2005; 30(1): 80-89. DOI: 10.1038/sj.npp.1300518

Steru L, Chermat R, Thierry B, and Simon P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology. 1985; 85: 367-370. DOI: https://doi.org/10.1007/BF00428203

Maier SF, and Seligman ME. Learned helplessness at fifty: Insights from neuroscience. Psychol Rev. 2016; 123(4): 349-367. DOI: 10.1037/rev0000033

María-Ríos CE, and Morrow JD. Mechanisms of shared vulnerability to post-traumatic stress disorder and substance use disorders. Front Behav Neurosci. 2020; 14: 6. DOI: 10.3389/fnbeh.2020.00006

Van der Kolk BA. The drug treatment of post-traumatic stress disorder. J Affect Disord. 1987; 13(2): 203-213. DOI: 10.1016/0165-0327(87)90024-3

Pahkla R, Kask A, and Rago L. Differential effects of beta-carbolines and antidepressants on rat exploratory activity in the elevated zero-maze. Pharmacol Biochem Behav. 2000; 65(4): 737-742. DOI: 10.1016/S0091-3057(99)00265-8

Pawlak CR, Karrenbauer BD, Schneider P, and Ho YJ. The elevated plus-maze test: differential psychopharmacology of anxiety-related behavior. Emotion Rev. 2012; 4(1): 98-115. DOI: 10.1177/1754073911421374

Kumar S, and Singh M. Anxiolytic assessment of Centella asiatica with elevated zero maze and elevated plus maze in rats. Pharma Innov J. 2019; 8(8): 330-335. Available at: https://www.thepharma journal.com/archives/2019/vol8issue8/PartF/8-8-47-253.pdf

Elkhatib SK, Moshfegh CM, Watson GF, and Case AJ. Peripheral inflammation is strongly linked to elevated zero maze behavior in repeated social defeat stress. Brain Behav Immun. 2020; 90: 279-285. DOI: 10.1016/j.bbi.2020.08.031

Brown MF, Rish PA, Von Culin JE, and Edberg JA. Spatial guidance of choice behavior in the radial-arm maze. J Exp Psychol Anim Behav Process. 1993; 19(3): 195. DOI: 10.1037//0097-7403.19.3.195

Diamond DM, Park CR, Heman KL, and Rose GM. Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus. 1999; 9(5): 542-552. DOI: 10.1002/(SICI)1098-1063

Levin ED. Learning about cognition risk with the radial-arm maze in the developmental neurotoxicology battery. Neurotoxicol Teratol. 2015; 52: 88-92. DOI: 10.1016/j.ntt.2015.05.007

Afrin S, Hossain A, Begum S. Effects of Moringa oleifera on working memory: An experimental study with memory impaired Wistar rats tested in radial arm maze. BMC Res Notes. 2022; 15(1): 314. DOI: 10.1186/s13104-022-06219-5

Copeland G, Keller TW, Krishnamurthy R, and Smith M. The case for safe RAM. InVLDB 1989. pp. 327-335. Available at: https://www.vldb.org/conf/1989/P327.PDF

Can ÖD, Özkay ÜD, and Üçel Uİ. Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. Eur J Pharmacol. 2013; 699(1-3): 250-257. DOI: 10.1016/j.ejphar.2012.10.017

Lalonde R, and Strazielle C. The hole-board test in Mutant mice. Behav Genet. 2022; 52(3): 158-169. DOI: 10.1007/s10519-022-10102-1

File SE, and Wardill AG. The reliability of the hole-board apparatus. Psychopharmacologia. 1975; 44: 47-51. DOI: 10.1007/BF00421183

do-Rego JC, Viana AF, Le Maître E, Deniel A, Rates SMK, Leroux-Nicollet I, et al. Comparisons between anxiety tests for selection of anxious and non-anxious mice. Behav Brain Res. 2006; 169(2): 282-288. DOI: 10.1016/j.bbr.2006.01.018

Nolan NA, and Parkes MW. The effects of benzodiazepines on the behaviour of mice on a hole-board. Psychopharmacologia. 1973; 29: 277-88. DOI: 10.1007/BF0041404

Rodgers RJ, and Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev. 1997; 21(6): 801-810. DOI: 10.1016/S0149-7634(96)00058-9

Pellow S, Chopin P, File SE, and Briley M. Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985; 14(3): 149-167. DOI: 10.1016/0165-0270(85)90031-7

Martínez JC, Cardenas F, Lamprea M, and Morato S. The role of vision and proprioception in the aversion of rats to the open arms of an elevated plus-maze. Behav Process. 2002; 60(1): 15-26. DOI: 10.1016/S0376-6357(02)00102-X

Kitada Y, Miyauchi T, Satoh A, and Satoh S. Effects of antidepressants in the rat forced swimming test. Eur J Pharmacol. 1981; 72(2-3): 1451-52. DOI: 10.1016/0014-2999(81)90269-7

Patil PR, and Dixit R. A modified method for objective analysis of forced swim test using student physiograph. Indian J Physiol Pharmacol. 2018; 62(4): 439-444. Available at: https://www.ijpp.com/IJPP%20archives/2018_62_4/439-444.pdf

Giardina WJ, and Ebert DM. Positive effects of captopril in the behavioral despair swim test. Biol Psychiatry. 1989; 25(6): 697-702. DOI: 10.1016/0006-3223(89)90240-0

Nishimura H, Ida Y, Tsuda A, and Tanaka M. Opposite effects of diazepam and β-CCE on immobility and straw-climbing behavior of rats in a modified forced-swim test. Pharmacol Biochem Behav. 1989; 33(1): 227-231. DOI: 10.1016/0091-3057(89)90454-1

Brotto LA, Gorzalka BB, and Barr AM. Paradoxical effects of chronic corticosterone on forced swim behaviours in aged male and female rats. Eur J Pharmacol. 2001; 424(3): 203-209. DOI: 10.1016/S0014-2999(01)01148-7

Karolewicz B, and Paul IA. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. Eur J Pharmacol. 2001; 415(2-3): 197-201. DOI: 10.1016/S0014-2999(01)00830-5

Chermat R, Thierry B, Mico JA, Steru L, and Simon P. Adaptation of the tail suspension test to the rat. J Pharmacol. 1986; 17(3):3 48-350. PMID: 3795979

Porsolt RD, Lenegre A, and McArthur RA. Pharmacological models of depression. In: McArthur RA, editor. Animal models in psychopharmacology. 1991, p. 137-159. DOI: 10.1007/978-3-0348-6419-0_14

Abramson LY, Seligman ME, and Teasdale JD. Learned helplessness in humans: Critique and reformulation. J Abnorm Psychol. 1978; 87(1): 49-74. DOI: 10.1037/0021-843X.87.1.49

Seligman ME, and Maier SF. Failure to escape traumatic shock. J Exp Psychol. 1967; 74(1): 1-9. DOI: 10.1037/h0024514

Bee R, Tariq M, and Gangwar AK. A review article on depression evaluating models and history of antidepressants. World J Pharm Res. 9(6): 502-522. Available at: https://www.wjpr.net/abstract_file/14464

Vaccheri A, Dall'Olio R, Gaggi R, Gandolfi O, and Montanaro N. Antidepressant versus neuroleptic activities of sulpiride isomers on four animal models of depression. Psychopharmacology. 1984; 83: 28-33. DOI: 10.1007/BF00427417

Murua VS, and Molina VA. Antidepressants reduce inactivity during both inescapable shock administration and shuttle-box testing. Eur J Pharmacol. 1991; 204(2): 187-192. DOI: 10.1016/0014-2999(91)90704-T

Simiand J, Keane PE, Guitard J, Langlois X, Gonalons N, Martin P, et al. Antidepressant profile in rodents of SR 58611A, a new selective agonist for atypical β-adrenoceptors. Eur J Pharmacol. 1992; 219(2): 193-201. DOI: 10.1016/0014-2999(92)90296-G

Curzon G, Kennett GA, Sarna GS, and Whitton PS. The effects of tianeptine and other antidepressants on a rat model of depression. Br J Psychiatry. 1992; 160(S15): 51-55. DOI: 10.1192/S0007125000296682

Shepherd JK, Grewal SS, Fletcher A, Bill DJ, and Dourish CT. Behavioural and pharmacological characterisation of the elevated zero-maze as an animal model of anxiety. Psychopharmacology. 1994; 116: 56-64. DOI: 10.1007/BF02244871

Kessler J, Markowitsch HJ, and Otto B. Subtle but distinct impairments of rats with chemical lesions in the thalamic mediodorsal nucleus, tested in a radial arm maze. J Comp Physiol Psychol. 1982; 96(5): 712-720. DOI: 10.1037/h0077927

Sharma S, Rakoczy S, and Brown-Borg H. Assessment of spatial memory in mice. Life Sci. 2010; 87(17-18): 521-536. DOI: 10.1016/j.lfs.2010.09.004

Bolhuis JJ, Buresova O, and Bures J. Persistence of working memory of rats in an aversively motivated radial maze task. Behav Brain Res. 1985; 15(1): 43-49. DOI: 10.1016/0166-4328(85)90016-6

Kesner RP, Hunt ME, Williams JM, and Long JM. Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat. Cereb Cortex. 1996; 6(2): 311-318. DOI: 10.1093/cercor/6.2.311

Leonard BE. Neuropharmacology of anxiolytic drugs: A selected review of the field. Drug Dev Res. 1982; 2(S1): 1-11. DOI: 10.1002/ddr.430010703