Advancements in the Utilization of Metal Nanoparticles for Breast Cancer Treatment: An In Vivo Studies Update

Main Article Content

Mahdiyeh Rahdari
Homa Sadat Hashemi
Seyed Mohamad Ali Hashemi
Ali Nadjafi-Semnani
Saeid Jamalie
Mohammad Hossein Sakhaee
Fariba Zabihi
Seyed Ali Shariat Razavi
Masoumeh Taghdisi Khaboushan
Ghazale Ahmadi


Breast cancer continues to pose a significant threat to women’s health around the globe, requiring continuous research and innovation in treatment. In recent years, metal nanoparticles have emerged as a promising means of treating breast cancer with greater precision and efficiency. The in vivo studies have indicated that metal nanoparticles, such as gold, silver, and platinum, have demonstrated a remarkable ability to selectively target breast cancer cells while sparing healthy tissue. These nanoparticles’ size, shape, and surface chemistry can be altered to enhance their biocompatibility, stability, and drug-loading capacity. They are also highly versatile for therapeutic applications due to their unique physicochemical properties, such as drug delivery, photothermal therapy, and imaging. This review focuses on recent in vivo studies evaluating metal nanoparticles’ safety and efficacy in treating breast cancer. Several studies have demonstrated that metal nanoparticles can trigger apoptosis, inhibit tumor growth, and reduce metastasis in cancer cells. Furthermore, using these nanoparticles with traditional chemotherapy and radiotherapy has demonstrated a synergistic effect, enhancing treatment efficacy. This review also examines the challenges and concerns associated with the clinical translation of metal nanoparticles. Factors like biocompatibility, pharmacokinetics, and long-term safety profiles are discussed in the context of regulatory approval and patient-specific considerations. In conclusion, this review highlights the evolving landscape of breast cancer treatment with the development of metal nanoparticles, as evidenced by recent in vivo studies. In addition to their therapeutic versatility, these nanoparticles can potentially improve patient outcomes and decrease the burden of breast cancer on society.

Article Details

How to Cite
Rahdari, M., Sadat Hashemi, H., Hashemi, S. M. A., Nadjafi-Semnani, A., Jamalie, S., Sakhaee, M. H., Zabihi, F., Shariat Razavi, S. A., Taghdisi Khaboushan, M., & Ahmadi, G. (2023). Advancements in the Utilization of Metal Nanoparticles for Breast Cancer Treatment: An In Vivo Studies Update. Journal of Lab Animal Research, 2(5), 63–71.
Review Article


Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Behl T, Jha SK and Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023; 22(1):1-40. DOI:

Guleria K, Sharma A, Lilhore UK and Prasad D. Breast cancer prediction and classification using supervised learning techniques. J Computat Theoretic Nanoscie. 2020; 17(6): 2519-2522. DOI:

Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J and Cardoso F. Breast cancer. Nat Rev Dis Primer. 2019;5(1):1-31. DOI:

Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A and Borji H. Antitumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anti-Cancer Agent Med Chem. 2023; 23(15): 1710-1721. DOI:

Sadr S and Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. Cur Cancer Ther Rev. 2023; 19(4): 292-297. DOI:

Ghoncheh M, Pournamdar Z and Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pacific J Cancer Prev. 2016; 17(S3): 43-46. DOI:

Ciria-Suarez L, Jiménez-Fonseca P, Palacín-Lois M, Antoñanzas-Basa M, Fernández-Montes A, Manzano-Fernández A, Castelo B, Asensio-Martínez E, Hernando-Polo S and Calderon C. Breast cancer patient experiences through a journey map: A qualitative study. PloS One. 2021; 16(9): e0257680. DOI:

Chou Y-H, Hsieh VC-R, Chen X, Huang T-Y and Shieh S-H. Unmet supportive care needs of survival patients with breast cancer in different cancer stages and treatment phases. Taiwan J Obstet Gynecol. 2020; 59(2): 231-236. DOI:

Sadr S, Poorjafari Jafroodi P, Haratizadeh MJ, Ghasemi Z, Borji H and Hajjafari A. Current status of nano‐vaccinology in veterinary medicine science. Vet Med Sci. 2023; 9(5): 2294-2308. DOI:

Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer. 2019; 19(10): 587-602. DOI:

Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP and Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 2021; 63: 102487. DOI:

Chandrakala V, Aruna V and Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg Mater. 2022; 5(6): 1593-1615. DOI:

Baranwal J, Barse B, Di Petrillo A, Gatto G, Pilia L and Kumar A. Nanoparticles in Cancer Diagnosis and Treatment. Mater. 2023; 16(15): 5354. DOI:

Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F and Mazzucchelli S. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacologic Res. 2016; 107: 57-65. DOI:

Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R and Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemic Soci Rev. 2012; 41(7): 2943-2970. DOI:

Izci M, Maksoudian C, Manshian BB and Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chemic Rev. 2021; 121(3): 1746-1803. DOI:

Aisida SO, Akpa PA, Ahmad I, Zhao T-k, Maaza M and Ezema FI. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Europ Polymer J. 2020; 122: 109371. DOI:

Sheervalilou R, Shirvaliloo M, Sargazi S and Ghaznavi H. Recent advances in iron oxide nanoparticles for brain cancer theranostics: From in vitro to clinical applications. Exp Opinion Drug Deliv. 2021; 18(7): 949-977. DOI:

Shang L, Zhou X, Zhang J, Shi Y and Zhong L. Metal nanoparticles for photodynamic therapy: A potential treatment for breast cancer. Molecules. 2021; 26(21): 6532. DOI:

Malik P and Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Intern J Pharmaceut. 2018; 553(1-2): 483-509. DOI:

Dolai J, Mandal K and Jana NR. Nanoparticle size effects in biomedical applications. ACS App Nano Mater. 2021; 4(7): 6471-6496. DOI:

Navya P, Kaphle A, Srinivas S, Bhargava SK, Rotello VM and Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Conver. 2019; 6(1): 1-30. DOI:

Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A and Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chemic Rev. 2014; 114(15): 7740-7781. DOI:

Bertrand N, Wu J, Xu X, Kamaly N and Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014; 66: 2-25. DOI:

Shi J, Kantoff PW, Wooster R and Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017; 17(1): 20-37. DOI:

Padera TP, Meijer EF and Munn LL. The lymphatic system in disease processes and cancer progression. Annual Rev Biomed Engin. 2016; 18: 125-158. DOI:

Park J, Kadasala NR, Abouelmagd SA, Castanares MA, Collins DS, Wei A and Yeo Y. Polymer–iron oxide composite nanoparticles for EPR-independent drug delivery. Biomater. 2016; 101: 285-295. DOI:

Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR and Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Sci. 2012; 338(6109): 903-910. DOI:

An K and Somorjai GA. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. Chem Cat Chem. 2012; 4(10): 1512-1524. DOI:

Jamkhande PG, Ghule NW, Bamer AH and Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. 2019; 53: 101174. DOI:

Kaushik M and Moores A. Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016; 18(3): 622-637. DOI:

Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CK, Adeli M, Wu A, Zarrabi A, Varma RS and Tay FR. Nonspherical Metal‐Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small. 2021; 17(17): 2007073. DOI:

Zein R, Sharrouf W and Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol. 2020; 5194780 . DOI:

Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ and Khar RK. Metallic nanoparticles: technology overview and drug delivery applications in oncology. Exp Opinion Drug Deliv. 2010; 7(8): 927-942. DOI:

Lin Z, Monteiro‐Riviere NA and Riviere JE. Pharmacokinetics of metallic nanoparticles. Wiley Interdisciplinary Reviews: Nanomed Nanobiotechnol. 2015; 7(2): 189-217. DOI:

Wiesmann N, Tremel W and Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mat Chem B. 2020; 8(23): 4973-4989. DOI:

Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR and Hansbro PM. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomed Pharmacother. 2022; 150: 112951. DOI:

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Intern J Nanomed. 2012: 7; 5577-5591. DOI:

Herdiana Y, Wathoni N, Shamsuddin S, Joni IM and Muchtaridi M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers. 2021; 13(11): 1717. DOI:

Sun T, Zhang YS, Pang B, Hyun DC, Yang M and Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chem Intern Edition. 2014; 53(46): 12320-12364. DOI:

Yagublu V, Karimova A, Hajibabazadeh J, Reissfelder C, Muradov M, Bellucci S and Allahverdiyev A. Overview of physicochemical properties of nanoparticles as drug carriers for targeted cancer therapy. J Function Biomater. 2022; 13(4): 196. DOI:

Damasco JA, Ravi S, Perez JD, Hagaman DE and Melancon MP. Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine. Nanomater. 2020; 10(11): 2186. DOI:

Albanese A, Tang PS and Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Rev Biomed Engin. 2012; 14: 1-16. DOI:

Phan HT and Haes AJ. What does nanoparticle stability mean? J Physic Chem C. 2019;123(27):16495-16507. DOI:

Wang M and Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010; 62(2): 90-99. DOI:

Raj S, Khurana S, Choudhari R, Kesari KK, Kamal MA, Garg N, Ruokolainen J, Das BC and Kumar D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars Cancer Biol; 2021: Elsevier. DOI:

Ahmad A, Khan F, Mishra RK and Khan R. Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting. J Med Chem. 2019; 62(23): 10475-10496. DOI:

Kim B, Shin J, Wu J, Omstead DT, Kiziltepe T, Littlepage LE and Bilgicer B. Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2-positive breast cancer cells to achieve enhanced in vivo efficacy. J Controlled Rel. 2020; 322: 530-541. DOI:

Kievit FM and Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Accounts Chem Res. 2011; 44(10): 853-862. DOI:

Lim Z-ZJ, Li J-EJ, Ng C-T, Yung L-YL and Bay B-H. Gold nanoparticles in cancer therapy. Acta Pharmacol Sinica. 2011;32(8):983-990. DOI:

Gessner I and Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Inter J Mol Sci. 2020; 21(7): 2536. DOI:

Yamada M, Foote M and Prow TW. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdisciplinary Reviews: Nanomed Nanobiotechnol. 2015; 7(3): 428-445. DOI:

Rokade SS, Joshi KA, Mahajan K, Patil S, Tomar G, Dubal DS, Parihar VS, Kitture R, Bellare JR and Ghosh S. Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer. Bioinorganic Chem Applicat. 2018; 4924186 . DOI:

Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D and Feng L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Intern J Mol Sci. 2020; 21(7): 2480. DOI:

Sztandera K, Gorzkiewicz M and Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharmaceut. 2018; 16(1): 1-23. DOI:

Cai W, Gao T, Hong H and Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol, Sci App. 2008:17-32. DOI:

Nejati K, Dadashpour M, Gharibi T, Mellatyar H and Akbarzadeh A. Biomedical applications of functionalized gold nanoparticles: a review. J Clust Sci. 2021: 33: 1-16. DOI:

Liu S, Khan AR, Yang X, Dong B, Ji J and Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Controll Rel. 2021; 335: 1-20. DOI:

Gavas S, Quazi S and Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021; 16(1): 173. DOI:

Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A and Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013; 166(2): 182-194. DOI:

Nazir S, Hussain T, Ayub A, Rashid U and MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine: Nanotechnology, Biol Med. 2014; 10(1): 19-34. DOI:

Długosz O, Szostak K, Staroń A, Pulit-Prociak J and Banach M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Mater. 2020; 13(2): 279. DOI:

Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H and Shakeri-Zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coordinat Chem Rev. 2019; 387: 299-324. DOI:

Vines JB, Yoon J-H, Ryu N-E, Lim D-J and Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019; 7: 167. DOI:

Dinparvar S, Bagirova M, Allahverdiyev AM, Abamor ES, Safarov T, Aydogdu M and Aktas D. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. J Photochem Photobiol B: Biol. 2020; 208: 111902. DOI:

Jang SJ, Yang IJ, Tettey CO, Kim KM and Shin HM. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Engin: C. 2016; 68: 430-435. DOI:

Gurunathan S, Han JW, Eppakayala V, Jeyaraj M and Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Intern. 2013; 535796. DOI:

El-Naggar NE-A, Hussein MH and El-Sawah AA. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Scientific Rep. 2017; 7(1): 10844. DOI:

Huy TQ, Huyen P, Le A-T and Tonezzer M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anti-Cancer Agents Med Chem. 2020; 20(11): 1276-1287. DOI:

Sadat Shandiz SA, Shafiee Ardestani M, Shahbazzadeh D, Assadi A, Ahangari Cohan R, Asgary V and Salehi S. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif Cells Nanomed Biotechnol. 2017; 45(6): 1082-1091. DOI:

Fu B, Dang M, Tao J, Li Y and Tang Y. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy. J colloid Interface Sci. 2020; 570: 197-204. DOI:

Manzoor S, Bashir DJ, Imtiyaz K, Rizvi MM, Ahamad I, Fatma T, Agarwal NB, Arora I and Samim M. Biofabricated platinum nanoparticles: therapeutic evaluation as a potential nanodrug against breast cancer cells and drug-resistant bacteria. RSC Adv. 2021; 11(40): 24900-24916. DOI:

Yang CX, Xing L, Chang X, Zhou TJ, Bi YY, Yu ZQ, Zhang ZQ and Jiang HL. Synergistic platinum (II) prodrug nanoparticles for enhanced breast cancer therapy. Mol Pharmaceut. 2020; 17(4): 1300-1309. DOI:

Han X, Xu K, Taratula O and Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019; 11(3): 799-819. DOI:

Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, Hamblin MR, Mirzaei SA, Soleimanpour H, Dehghani S,, et al. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles. Front Pharmacol. 2022; 13: 797804. DOI:

Patel P, Nadar VM, Umapathy D, Manivannan S, Venkatesan R, Joseph Arokiyam VA, Pappu S, Prakash PA, Mohamed Jabir MS, Gulyás B and Padmanabhan P. Doxorubicin-conjugated platinum theranostic nanoparticles induce apoptosis via inhibition of a cell survival (PI3K/AKT) signaling pathway in human breast cancer cells. ACS Applied Nano Mater. 2020; 4(1): 198-210. DOI:

Pawar AA, Sahoo J, Verma A, Lodh A and Lakkakula J. Usage of platinum nanoparticles for anticancer therapy over last decade: a review. Part Part Syst Charact. 2021; 38(10): 2100115. DOI:

Londhe S, Haque S, Tripathy S, Bojja S and Patra CR. Silver nitroprusside nanoparticles for breast cancer therapy: in vitro and in vivo approach. Nanoscale. 2023; 15(23): 10017-10032. DOI:

Laha D, Pal K, Chowdhuri AR, Parida PK, Sahu SK, Jana K and Karmakar P. Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New J Chem. 2019; 43(1): 217-229. DOI:

Iqbal H, Razzaq A, Uzair B, Ul Ain N, Sajjad S, Althobaiti NA, Albalawi AE, Menaa B, Haroon M, Khan M and Khan NU. Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice. Mater. 2021; 14(12): 3155. DOI:

Zeng L, Pan Y, Wang S, Wang X, Zhao X, Ren W, Lu G and Wu A. Raman reporter-coupled Agcore@ Aushell nanostars for in vivo improved surface enhanced Raman scattering imaging and near-infrared-triggered photothermal therapy in breast cancers. ACS Appl Mater Interfaces. 2015; 7(30): 16781-16791. DOI:

Eghtedari M, Liopo AV, Copland JA, Oraevsky AA and Motamedi M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano lette. 2009; 9(1): 287-291. DOI:

Jiang Z, Wang Y, Sun L, Yuan B, Tian Y, Xiang L, Li Y, Li Y, Li J and Wu A. Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomater. 2019; 197: 41-50. DOI:

Laha D, Pramanik A, Chattopadhyay S, kumar Dash S, Roy S, Pramanik P and Karmakar P. Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems. RSC Adv. 2015; 5(83): 68169-68178. DOI:

Swanner J, Fahrenholtz CD, Tenvooren I, Bernish BW, Sears JJ, Hooker A, Furdui CM, Alli E, Li W, Donati GL and Cook KL. Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo. FASEB bioAdv. 2019; 1(10): 639. DOI:

Munawer U, Raghavendra VB, Ningaraju S, Krishna KL, Ghosh AR, Melappa G and Pugazhendhi A. Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int J Pharm. 2020; 588: 119729. DOI:

Mittal AK and Banerjee UC. In vivo safety, toxicity, biocompatibility and anti-tumour efficacy of bioinspired silver and selenium nanoparticles. Mater Today Comm. 2021; 26: 102001. DOI:

Chen Q, Xu M, Zheng W, Xu T, Deng H and Liu J. Se/Ru-decorated porous metal–organic framework nanoparticles for the delivery of pooled siRNAs to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS App Mater Interfaces. 2017; 9(8): 6712-6724. DOI:

Shao Y, Yang G, Lin J, Fan X, Guo Y, Zhu W, Cai Y, Huang H, Hu D, Pang W and Liu Y. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics. 2021; 11(19): 9262. DOI:

Albalawi F, Hussein MZ, Fakurazi S and Masarudin MJ. Engineered nanomaterials: The challenges and opportunities for nanomedicines. Int J Nanomed. 2021; 16: 161-184. DOI:

Mirza Z, Karim S and editors. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol; 2021; 69: Elsevier. DOI:

Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB and Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Rel. 2022; 352: 1024-1047. DOI:

Nikdouz A, Namarvari N, Shayan RG and Hosseini A. Comprehensive comparison of theranostic nanoparticles in breast cancer. Am J Clin Exp Immunol. 2022; 11(1):

Gulati S, Kumar S, Singh P, Diwan A and Mongia A. Biocompatible chitosan-coated gold nanoparticles: novel, efficient, and promising nanosystems for cancer treatment. Handbook polym Ceram Nanotechnol. 2021: 811-838. DOI:

Gomes A, Sengupta J, Datta P, Ghosh S and Gomes A. Physiological interactions of nanoparticles in energy metabolism, immune function and their biosafety: A review. J Nanosci Nanotechnol. 2016; 16(1): 92-116. DOI:

Dobrovolskaia MA and McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007; 2(8): 469-478. DOI:

Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA and Syed AF. Metal‐based nanoparticles and their toxicity assessment. Wiley interdisciplinary reviews: Nanomed Nanobiotechnol. 2010; 2(5): 544-568. DOI:

Sengul AB and Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Env Chem Lett. 2020; 18: 1659-1683. DOI:

Wu T and Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J App Toxicol. 2018; 38(1): 25-40. DOI:

Sharma H, Mishra PK, Talegaonkar S and Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today. 2015; 20(9): 1143-1151. DOI:

Liao Z, Wong SW, Yeo HL and Zhao Y. Smart nanocarriers for cancer treatment: Clinical impact and safety. NanoImpact. 2020; 20: 100253. DOI:

Grassian VH. When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J Phys Chem C. 2008; 112(47): 18303-18313. DOI:

Almeida JPM, Chen AL, Foster A and Drezek R. In vivo biodistribution of nanoparticles. Nanomed. 2011; 6(5): 815-835. DOI:

Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri‐Fink A and Rothen‐Rutishauser B. Biodistribution, clearance, and long‐term fate of clinically relevant nanomaterials. Adv Mater. 2018; 30(19): 1704307. DOI:

Subhan MA and Muzibur Rahman M. Recent development in metallic nanoparticles for breast cancer therapy and diagnosis. Chem Rec. 2022; 22(7): e202100331. DOI:

Sivasubramanian M, Hsia Y and Lo LW. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front Mol Biosci. 2014; 1: 15. DOI:

Mirabello V, Calatayud DG, Arrowsmith RL, Ge H and Pascu SI. Metallic nanoparticles as synthetic building blocks for cancer diagnostics: from materials design to molecular imaging applications. J Mater Chem B. 2015; 3(28): 5657-5672. DOI: