Isoflavones Potentials for the Treatment of Osteoporosis: An Update on In-vivo Studies
Main Article Content
Abstract
In plant-derived compounds, phytoestrogens are biologically active substances that exhibit various estrogenic and antiestrogenic effects. With the increasing prevalence of osteoporosis among older women caused by estrogen deficiency, identifying natural substances that can potentially treat the disease is of utmost significance. This review study aimed to explore how phytoestrogen metabolites mimic mammalian estrogens and prevent bone loss following menopause. Phytoestrogens derived from plants have gained considerable attention due to their similarity to mammalian estrogens and lower impact on sensitive tissues, such as the uterus and breasts. One well-established approach to simulate postmenopausal conditions is by using ovariectomized rats or mice (OVX). The administration of phytoestrogens in the OVX murine model has inhibited osteoclast differentiation, activation, and Pyridinoline secretion. Furthermore, these compounds have been shown to enhance bone formation and increase bone mineral density and the expression levels of various osteoblast markers, such as alkaline phosphatase, osteocalcin, osteopontin, and alpha-1 collagen. Several natural phytoestrogen compounds in plants possess a chemical structure akin to 17 beta-estradiol, a steroid hormone. In postmenopausal women with osteoporosis, isoflavones, a type of phytoestrogen, can potentially treat the disease by binding to estrogen receptors on the surface of target cells. Mechanistic investigations have demonstrated that phytoestrogens can retard bone resorption and promote bone formation. Novel approaches in phytoestrogen research could involve investigating the synergistic effects of combining different phytoestrogen compounds, exploring their interactions with other signaling pathways, or assessing their effects on various bone types. Furthermore, identifying novel sources of phytoestrogens could lead to the discovery of new compounds with potent osteoprotective effects.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Pignolo RJ, Law SF, and Chandra A. Bone aging, cellular senescence, and osteoporosis. JBMR plus. 2021; 5(4): e10488. DOI: https://doi.org/10.1002/jbm4.10488
Yu B, and Wang CY. Osteoporosis and periodontal diseases-an update on their association and mechanistic links. Periodontology. 2022; 89(1): 99-113. DOI: https://doi.org/10.1111/prd.12422
Shevroja E, Cafarelli FP, Guglielmi G, and Hans D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrinology. 2021; 74: 20-28. DOI:10.1007/s12020-021-02806-x
Genazzani AR, Monteleone P, Giannini A, and Simoncini T. Hormone therapy in the postmenopausal years: Considering benefits and risks in clinical practice. Human Reprod Update. 2021; 27(6): 1115-1150. DOI: https://doi.org/10.1093/humupd/dmab026
Ringe JD. Plain vitamin D or active vitamin D in the treatment of osteoporosis: Where do we stand today?. Arch Osteoporos. 2020; 15: 1-10. DOI: https://doi.org/10.1007/s11657-020-00842-0
Rizzoli R, and Biver E. Are probiotics the new calcium and vitamin D for bone health?. Cur Osteoporos Rep. 2020; 18: 273-284. DOI: https://doi.org/10.1007/s11914-020-00591-6
Bhattarai HK, Shrestha S, Rokka K, and Shakya R. Vitamin D, calcium, parathyroid hormone, and sex steroids in bone health and effects
of aging. J Osteoporos. 2020; 2020: 9324505. DOI: https://doi.org/10.1155/2020/9324505
Peraza-Delgado A, Sánchez-Gómez MB, Gómez-Salgado J, Romero-Martín M, Novo-Muñoz M, and Duarte-Clíments G. Non-pharmacological interventions towards preventing the triad osteoporosis-falls risk-hip fracture, in population older than 65. Scoping Review. J Clin Med. 2020; 9(8): 2329. DOI: https://doi.org/10.3390/jcm9082329
Cai Xy, Zhang ZJ, Xiong JL, Yang M, and Wang ZT. Experimental and molecular docking studies of estrogen-like and anti-osteoporosis activity of compounds in Fructus Psoraleae. J Ethnopharmacol. 2021; 276: 114044. DOI: https://doi.org/10.1016/j.jep.2021.114044
Auréal M, Machuca-Gayet I, and Coury F. Rheumatoid arthritis in the view of osteoimmunology. Biomolecules. 2020; 11(1): 48. DOI: https://doi.org/10.3390/biom11010048
Kravvariti E, Kasdagli M-I, Diomatari KM, Mouratidou P, Daskalakis K, Mitsikostas DD, et al. Meta-analysis of placebo-arm dropouts in osteoporosis randomized-controlled trials and implications for nocebo-associated discontinuation of anti-osteoporotic drugs in clinical practice. Osteoporos Int. 2023: 1-14 .DOI: 10.1007/s00198-022-06658-7
Langer R, Hodis H, Lobo R, and Allison M. Hormone replacement therapy-where are we now?. Climacteric. 2021; 24(1): 3-10. DOI: https://doi.org/10.1080/13697137.2020.1851183
Martiniakova M, Babikova M, and Omelka R. Pharmacological agents and natural compounds: Available treatments for osteoporosis. J Physiol Pharmacol. 2020; 71(3): 307-320. DOI: https://doi.org/10.26402/jpp.2020.3.01
Yoon KH, Cho DC, Yu SH, Kim KT, Jeon Y, and Sung JK. The change of bone metabolism in ovariectomized rats: Analyses of microCT scan and biochemical markers of bone turnover. J Korean Neurosurg Soc. 2012; 51(6): 323-327. DOI: https://doi.org/10.3340/jkns.2012.51.6.323
Zheng X, Zhang Y, Guo S, Zhang W, Wang J, and Lin Y. Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy induced osteoporosis rats. Exp Ther Med. 2018; 16(3): 1807-1813. DOI: https://doi.org/10.3892/etm.2018.6356
Chalvon-Demersay T, Blachier F, Tomé D, and Blais A. Animal models for the study of the relationships between diet and obesity: A focus on dietary protein and estrogen deficiency. Front Nut. 2017; 4: 5. DOI: https://doi.org/10.3389/fnut.2017.00005
Coffman AA, Basta‐Pljakic J, Guerra RM, Ebetino FH, Lundy MW, Majeska RJ, et al. A bisphosphonate with a low hydroxyapatite binding affinity prevents bone loss in mice after ovariectomy and reverses rapidly with treatment cessation. JBMR plus. 2021; 5(4): e10476. DOI: https://doi.org/10.1002/jbm4.10476
Macari S, Duffles LF, Queiroz-Junior CM, Madeira MF, Dias GJ, Teixeira MM, et al. Oestrogen regulates bone resorption and cytokine production in the maxillae of female mice. Arch Oral Biol. 2015; 60(2): 333-341. DOI: https://doi.org/10.1016/j.archoralbio.2014.11.010
Sadr S, Ghafouri SA, Ghaniei A, Jami Moharreri D, Zeinali M, Qaemifar N, et al. Treatment of Avian Trichomoniasis by Tannin-based Herbal mixture (Artemisia Annua, Quercus infectoria, and Allium Sativum). J World’s Poult Sci. 2022; 1(2): 32-39. Available at: https://jwps.rovedar.com/article_163137_a229fe401769f4f7908398db5b8ec0e0.pdf
Sadr S, Ahmadi Simab P, Kasaei M, Landi MG, Borji H, and Adhami G. Potential of anthelmintic herbal drugs against gastrointestinal nematodes in farm animals: A review. Farm Anim Health
Nut. 2022; 1(1): 26-30 available at: https://fahn.rovedar.com/article_160944_3e6c82b5703b82558f72d30827da6569.pdf
Mondal S, Soumya NPP, Mini S, and Sivan SK. Bioactive compounds in functional food and their role as therapeutics. Bioact Compd Health Dis. 2021; 4(3): 24-39. DOI: https://doi.org/10.31989/bchd.v4i3.786
Słupski W, Jawień P, and Nowak B. Botanicals in postmenopausal osteoporosis. Nutrients. 2021; 13(5): 1609. DOI: https://doi.org/10.3390/nu13051609
Gupta C, Prakash D, and Gupta S. Phytoestrogens as pharma foods. Adv Food Technol Nutr Sci Open J. 2016; 2(1): 19-31. DOI: https://doi.org/10.17140/AFTNSOJ-2-127
Rietjens IM, Louisse J, and Beekmann K. The potential health effects of dietary phytoestrogens. British J Pharmacol. 2017; 174(11): 1263-1280. DOI: https://doi.org/10.1111/bph.13622
Tripathi G, Raja N, and Yun H. Effect of direct loading of phytoestrogens into the calcium phosphate scaffold on osteoporotic bone tissue regeneration. J Mater Chem B. 2015; 3(44): 8694-703 DOI: https://doi.org/10.1039/C5TB01574J
Sirotkin AV, and Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol. 2014; 741: 230-236. DOI: https://doi.org/10.1016/j.ejphar.2014.07.057
Vitale DC, Piazza C, Melilli B, Drago F, and Salomone S. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur J drug Metab Pharmacokinet. 2013; 38: 15-25. DOI:10.1007/s13318-012-0112-y
Wood CL, Lane LC, and Cheetham T. Puberty: Normal physiology (brief overview). Best Pract Res Clin Endocrinol Metab. 2019; 33(3): 101265. DOI: https://doi.org/10.1016/j.beem.2019.03.001
Mills EG, Yang L, Nielsen MF, Kassem M, Dhillo WS, and Comninos AN. The relationship between bone and reproductive hormones beyond estrogens and androgens. Endocr Rev. 2021; 42(6): 691-719. DOI: https://doi.org/10.1210/endrev/bnab015
Hadji P, Colli E, and Regidor PA. Bone health in estrogen-free contraception. Osteoporos Int. 2019; 30(12): 2391-2400. DOI: https://doi.org/10.1007/s00198-019-05103-6
Song S, Guo Y, Yang Y, and Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther. 2022: 108168. DOI: https://doi.org/10.1016/j.pharmthera.2022.108168
Emerton K, Hu B, Woo A, Sinofsky A, Hernandez C, Majeska R, et al. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone. 2010; 46(3): 577-583. DOI: https://doi.org/10.1016/j.bone.2009.11.006
Thent ZC, Das S, Mahakkanukrauh P, and Lanzotti V. Osteoporosis: Possible pathways involved and the role of natural phytoestrogens in bone metabolism. Sains Malays. 2019; 48(9): 2007-2019. DOI: https://doi.org/10.17576/jsm-2019-4809-22
Martín-Millán M, and Castaneda S. Estrogens, osteoarthritis and inflammation. Joint Bone Spine. 2013; 80(4): 368-373. DOI: https://doi.org/10.1016/j.jbspin.2012.11.008
Xiao W, Li S, Pacios S, Wang Y, and Graves DT. Bone remodeling under pathological conditions. Tooth Movement. 2016; 18: 17-27. DOI: https://doi.org/10.1159/000351896
Rozenberg S, Bruyère O, Bergmann P, Cavalier E, Gielen E, Goemaere S, et al. How to manage osteoporosis before the age of 50. Maturitas. 2020; 138: 14-25. DOI: https://doi.org/10.1016/j.maturitas.2020.05.004
Liu T, Li N, Yan Yq, Liu Y, Xiong K, Liu Y, et al. Recent advances in the anti‐aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytother Res. 2020; 34(3): 435-447 DOI: https://doi.org/10.1002/ptr.6538
Dean M, Murphy BT, and Burdette JE. Phytosteroids beyond estrogens: Regulators of reproductive and endocrine function in natural products. Mol Cell Endocrinol. 2017; 442: 98-105. DOI: https://doi.org/10.1016/j.mce.2016.12.013
Taylor M. Complementary and alternative approaches to menopause. Endocrinol Metabol Clinics. 2015; 44(3): 619-648. DOI: https://doi.org/10.1016/j.ecl.2015.05.008
Toda T, Sugioka Y, and Koike T. Soybean isoflavone can protect against osteoarthritis in ovariectomized rats. J food Sci Technol. 2020; 57: 3409-3414. DOI: https://doi.org/10.1007/s13197-020-04374-w
Hu C, Wong WT, Wu R, and Lai WF. Biochemistry and use of soybean isoflavones in functional food development. Crit Rev Food Sci Nutr. 2020; 60(12): 2098-2112. DOI: https://doi.org/10.1080/10408398.2019.1630598
Xie CL, Park KH, Kang SS, Cho KM, and Lee DH. Isoflavone‐enriched soybean leaves attenuate ovariectomy‐induced osteoporosis in rats by anti‐inflammatory activity. J Sci Food Agric. 2021; 101(4): 1499-1506. DOI: https://doi.org/10.1002/jsfa.10763
Hooshiar SH, Tobeiha M, and Jafarnejad S. Soy isoflavones and bone health: Focus on the RANKL/RANK/OPG pathway. BioMed Res Int. 2022. 2022: 8862278. DOI: https://doi.org/10.1155/2022/8862278
Abdelrazek H, Mahmoud M, Tag HM, Greish SM, Eltamany DA, and Soliman MT. Soy isoflavones ameliorate metabolic and immunological alterations of ovariectomy in female Wistar rats: Antioxidant and estrogen sparing potential. Oxid Med Cell Longev. 2019; 2019: 5713606. DOI: https://doi.org/10.1155/2019/5713606
Zullkiflee N, Taha H, and Usman A. Propolis: Its role and efficacy in human health and diseases. Molecules. 2022; 27(18): 6120. DOI: https://doi.org/10.3390/molecules27186120
Ali Reza A, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, et al. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites. Crit Rev Food Sci Nutr. 2021. p. 1-31. DOI: https://doi.org/10.1080/10408398.2021.2021138
Thangavel P, Puga-Olguín A, Rodríguez-Landa JF, and Zepeda RC. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Mol. 2019; 24(21): 3892. DOI: https://doi.org/10.3390/molecules24213892
Wang J, Shang F, Jiang R, Liu L, Wang S, and Hou J, et al. Nitric oxide-donating genistein prodrug: Design, synthesis, and bioactivity on MC3T3-E1 cells. J Pharmacol Sci. 2007; 104(1): 82-89. DOI: https://doi.org/10.1254/jphs.FP0061549
Sakai E, Farhana F, Yamaguchi Y, and Tsukuba T. Potentials of natural antioxidants from plants as antiosteoporotic agents. Stud Nat Prod Chem. 2022; 72: 1-28. DOI: https://doi.org/10.1016/B978-0-12-823944-5.00002-8
Zhang Y, Li Q, Li X, Wan HY, and Wong MS. Erythrina variegata extract exerts osteoprotective effects by suppression of the process of bone resorption. Br J Nut. 2010; 104(7): 965-971. DOI: https://doi.org/10.1017/S0007114510001789
Hertrampf T, Schleipen B, Offermanns C, Velders M, Laudenbach U, and Diel P. Comparison of the bone protective effects of an isoflavone-rich diet with dietary and subcutaneous administrations of genistein in ovariectomized rats. Toxicol let. 2009; 184(3): 198-203. DOI: https://doi.org/10.1016/j.toxlet.2008.11.006
Kawakita S, Marotta F, Naito Y, Gumaste U, Jain S, Tsuchiya J, et al. Effect of an isoflavones-containing red clover preparation and alkaline supplementation on bone metabolism in ovariectomized rats. Clin Interv Aging. 2009; 4: 91-100. DOI: https://doi.org/10.2147/CIA.S4164
Bitto A, Burnett B, Polito F, Marini H, Levy R, Armbruster M, et al. Effects of genistein aglycone in osteoporotic, ovariectomized rats: A comparison with alendronate, raloxifene and oestradiol. Brit J Pharmacol. 2008; 155(6): 896-905. DOI: https://doi.org/10.1038/bjp.2008.305
Sarasquete C, Úbeda Manzanaro M, and Ortiz Delgado JB. Effects of the isoflavone daidzein in Senegalese sole, Solea senegalensis: Modulation of the oestrogen receptor-β, apoptosis and enzymatic signalling pathways. Histol Histopathol. 2019; 34: 875-887. DOI: https://doi.org/10.14670/HH-18-090
Liu Zm, Chen B, Li S, Li G, Zhang D, and Ho SC, et al. Effect of whole soy and isoflavones daidzein on bone turnover and inflammatory markers: A 6-month double-blind, randomized controlled trial in Chinese postmenopausal women who are equol producers. Ther Adv Endocrinol Metab. 2020; 11: 1-4. DOI: 2042018820920555
Liu X, Jia H, and Xia H. Reduction of intra-articular adhesion by topical application of Daidzein following knee surgery in rabbits. Afr J Tradit Complement Altern Med. 2017; 14(4): 265-271. DOI: https://doi.org/10.21010/ajtcam.v14i4.29
57. Alshehri MM, Sharifi-Rad J, Herrera-Bravo J, Jara EL, Salazar LA, Kregiel D, et al. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxid Med Cell Longev. 2021; 2021: 6331630. DOI: https://doi.org/10.1155/2021/6331630
Sun MY, Ye Y, Xiao L, Rahman K, Xia W, and Zhang H. Daidzein: A review of pharmacological effects. Afr J Tradit Complement Altern Med. 2016; 13(3): 117-132. DOI: https://doi.org/10.21010/ajtcam.v13i3.15
Hussain A, Tabrez ES, Muhammad A, and Peela JR. The mechanisms of dietary phytoestrogen as a potential treatment and prevention agent against Alzheimer's disease. Crit Rev Eukaryot Gene Express. 2018; 28(4): 321-327. DOI: https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018025847
Ajdžanovic VZ, Trifunovic S, Miljic D, Šošic-Jurjevic B, Filipovic B, Miler M, et al. Somatopause, weaknesses of the therapeutic approaches and the cautious optimism based on experimental ageing studies with soy isoflavones. EXCLI J. 2018; 17: 279-301. DOI: https://doi.org/10.17179/excli2017-956
Křížová L, Dadáková K, Kašparovská J, and Kašparovský T. Isoflavones. Molecules. 2019; 24(6): 1076. DOI: https://doi.org/10.3390/molecules24061076
Mayo B, Vázquez L, and Flórez AB. Equol: A bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients. 2019; 11(9): 2231. DOI: https://doi.org/10.3390/nu11092231
Lund TD, Munson DJ, Haldy ME, Setchell KD, Lephart ED, and Handa RJ. Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reproduc. 2004; 70(4): 1188-1195. DOI: https://doi.org/10.1095/biolreprod.103.023713
Canivenc-Lavier MC, and Bennetau-Pelissero C. Phytoestrogens
and Health Effects. Nutrients. 2023; 15(2): 317. DOI: https://doi.org/10.3390/nu15020317
Stojanov S, and Kreft S. Gut microbiota and the metabolism of phytoestrogens. Rev Bras Farmacogn. 2020; 30: 145-154. DOI: https://doi.org/10.1007/s43450-020-00049-x
Fonseca D, and Ward WE. Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone. 2004; 35(2): 489-497. DOI: https://doi.org/10.1016/j.bone.2004.03.031
Cheng CH, Chen LR, and Chen KH. Osteoporosis due to hormone imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci. 2022; 23(3): 1376. DOI: https://doi.org/10.3390/ijms23031376
Kim IS. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants. 2021; 10(7): 1064. DOI: https://doi.org/10.3390/antiox10071064
Loo YT, Howell K, Chan M, Zhang P, and Ng K. Modulation of the human gut microbiota by phenolics and phenolic fiber‐rich foods. Com Rev in Food Sci and Food Safety. 2020; 19(4): 1268-1298. DOI: https://doi.org/10.1111/1541-4337.12563
Watanabe S, and Uehara M. Health effects and safety of soy and isoflavones. The role of functional food security in global health. 2019. p. 379-394. DOI: https://doi.org/10.1016/B978-0-12-813148-0.00022-0
Harahap IA, and Suliburska J. Probiotics and isoflavones as a promising therapeutic for calcium status and bone health: A narrative review. Foods. 2021; 10(11): 2685. DOI: https://doi.org/10.3390/foods10112685
Mayo Pérez B, Vázquez L, and Flórez García AB. Equol: A bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients. 2019; 11(9): 2231. DOI: https://doi.org/10.3390/nu11092231
David K, Narinx N, Antonio L, Evenepoel P, Claessens F, Decallonne B, et al. Bone health in ageing men. Rev Endocr Metab Disord. 2022; 23: 1173-1208. DOI: https://doi.org/10.1007/s11154-022-09738-5
Vigneswaran K, and Hamoda H. Hormone replacement therapy-Current recommendations. Best Pract Res Clin Obstet Gynaecol. 2022; 81: 8-21. DOI: https://doi.org/10.1016/j.bpobgyn.2021.12.001
Azeez JM, Susmi TR, Remadevi V, Ravindran V, Sujatha AS, Ayswarya RNS, et al. New insights into the functions of progesterone receptor (PR) isoforms and progesterone signaling. Ame J of Can Res. 2021; 11(11): 5214. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640821/
Parasuraman S, Thing GS, and Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev. 2014; 8(16): 73-80. DOI: https://doi.org/10.4103/0973-7847.134229
Swathi Krishna S, Kuriakose BB, and Lakshmi P. Effects of phytoestrogens on reproductive organ health. Arch Pharma Res. 2022; 45: 849-864.. DOI: https://doi.org/10.1007/s12272-022-01417-y
Júnior L, Silva K, Oliveira F, and Nisar S. The most abundant isoflavone contained in soy beans and its effects on menopausal symptoms and related pathophysiologies: A review. Int J Chem Biochem Sci.
; 21: 22-35. Available at: https://www.iscientific.org/wp-content/uploads/2022/04/3-IJCBS-22-21-3.pdf
Lagari VS, and Levis S. Phytoestrogens in the prevention of postmenopausal bone loss. J Clin Densitom. 2013; 16(4): 445-449. DOI: https://doi.org/10.1016/j.jocd.2013.08.011
Sathyapalan T, Aye M, Rigby AS, Fraser WD, Thatcher NJ, Kilpatrick ES, et al. Soy reduces bone turnover markers in women during early menopause: A randomized controlled trial. J Bone Min Res. 2017; 32(1): 157-164. DOI: https://doi.org/10.1002/jbmr.2927
Oseni T, Patel R, Pyle J, and Jordan VC. Selective estrogen receptor modulators and phytoestrogens. Planta medica. 2008; 74(13): 1656-1665. DOI: https://doi.org/10.1055/s-0028-1088304
Pilšáková L, Riečanský I, and Jagla F. The physiological actions of isoflavone phytoestrogens. Physiol Res. 2010; 59(5): 651-664. DOI: https://doi.org/10.33549/physiolres.931902