Advances in Nanotechnology for Enhanced Leukemia Therapy: A Systematic Review of In Vivo Studies

Main Article Content

Ahmad Mir Hosseini
Shiva Dianaty
Sara Shahhosseini
Reza Biglarifard
Razieh Razmi
Nima Komeili
Danial Soltani

Abstract

Introduction: Leukemia, a heterogeneous group of blood cancers, can present a significant clinical challenge due to its varying subtypes and complexity. The application of nanotechnology has the potential to revolutionize the treatment of leukemia. Based on in vivo studies, this systematic review provided an accurate and current assessment of nanotechnology therapeutic advances in leukemia treatment.


Materials and methods: The present systematic review focused on in vivo studies investigating the therapeutic potential of nanotechnology for leukemia treatment. Comprehensive searches were conducted across significant databases, including PubMed, Scopus, and Google Scholar, to identify relevant publications. Selection criteria encompassed studies that employed animal models to assess nanotechnology effects on leukemia progression. Data extracted from selected articles were rigorously analyzed. This review included studies published between 2010 and 2022.


Results: Based on the inclusion criteria, 24 relevant studies were identified. According to the findings of this review, nanotechnology has made substantial progress in the treatment of leukemia, as demonstrated by in vivo studies. Advanced nanoparticle-based drug delivery systems, precision gene therapies, and targeted therapeutic approaches have consistently exhibited superior outcomes in treating various leukemia subtypes in animal models. These compelling results emphasize the transformative potential of nanotechnology for leukemia therapy.


Conclusion: In summary, the meticulous analyses of the in vivo studies underscore the role that nanotechnology plays in the advancement of the treatment of leukemia. Nanotechnology has demonstrated efficacy in preclinical models, indicating that it can be translated into clinical applications, offering new avenues for treating leukemia and reinforcing its position as an innovative therapeutic approach.

Article Details

How to Cite
Mir Hosseini, A., Dianaty, S., Shahhosseini, S., Biglarifard, R., Razmi, R., Komeili, N., & Soltani, D. (2023). Advances in Nanotechnology for Enhanced Leukemia Therapy: A Systematic Review of In Vivo Studies. Journal of Lab Animal Research, 2(6), 86–99. https://doi.org/10.58803/jlar.v2i6.34
Section
Review Article

References

Chen SJ, Zhou GB. Targeted therapy: The new lease on life for acute promyelocytic leukemia, and beyond. IUBMB Life. 2012; 64(8): 671-675. DOI: 10.1002/iub.1055

Alsalem M, Zaidan A, Zaidan B, Hashim M, Madhloom H, Azeez N, et al. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput Methods Programs Biomed. 2018; 158: 93-112. DOI: 10.1016/j.cmpb.2018.02.005

Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anti-Cancer Agents Med Chem. 2023; 23(15): 1710-1721. DOI: 10.2174/1871520623666230529141544

Sadr S, Borji H. Echinococcus granulosus as a promising therapeutic agent against triple-negative breast cancer. Curr Cancer Ther Rev. 2023; 19(4): 292-297. DOI: 10.2174/1573394719666230427094247

Asouli A, Sadr S, Mohebalian H, Borji H. Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562. Acta Parasitol. 2023: 1-8. DOI: 10.1007/s11686-023-00680-3

Sadr S, Yousefsani Z, Simab PA, Alizadeh AJR, Lotfalizadeh N, Borji H. Trichinella spiralis as a potential antitumor agent: An update. World Vet J. 2023; 13(1): 65-74. DOI: 10.54203/scil.2023.wvj7

Wady SH. Classification of Acute Lymphoblastic Leukemia through the Fusion of Local Descriptors. UHD J Sci Technol. 2022; 6(1): 21-33. DOI: 10.21928/uhdjst.v6n1y2022.pp21-33

Sekar MD, Raj M, Manivannan P. Role of Morphology in the Diagnosis of Acute Leukemias: Systematic Review. Indian J Med Paediatr Oncol. 2023; 44(05): 464-473. DOI: 10.1055/s-0043-1764369

Chen Y, Li J, Xu L, Găman M-A, Zou Z. The genesis and evolution of acute myeloid leukemia stem cells in the microenvironment: From biology to therapeutic targeting. Cell Death Discov. 2022; 8(1): 397. DOI: 10.1038/s41420-022-01193-0

Khwaja A, Bjorkholm M, Gale RE, Levine RL, Jordan CT, Ehninger G, et al. Acute myeloid leukaemia. Nat Rev Dis Primers. 2016; 2(1): 1-22. DOI: 10.1038/nrdp.2016.10

De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016; 6(7): e441-e. DOI: 10.1038/bcj.2016.50

Sampaio MM, Santos MLC, Marques HS, de Souza Gonçalves VL, Araújo GRL, Lopes LW, et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol. 2021; 12(2): 69. DOI: 10.5306/wjco.v12.i2.69

Tefferi A. Classification, diagnosis and management of myeloproliferative disorders in the JAK2 V617F Era. ASH Educ Program Book. 2006; 2006(1): 240-245. DOI: 10.1182/asheducation-2006.1.240

Findakly D, Arslan W, Findakly D. Clinical features and outcomes of patients with chronic myeloid leukemia presenting with isolated thrombocytosis: a systematic review and a case from our institution. Cureus. 2020; 12(6): e8788. DOI: 10.7759/cureus.8788

Howard MR. THE SYSTEM HAEMATOLOGICAL. Chamberlain's Symptoms Signs Clin Med, An Introduction Med Diagnosis. 2010:286. Available at: https://www.ysmubooks.am/uploads/Chamberlain_s_Symptoms_and_Signs_in_Clinical_Medicine_13th_medibos_blogspot_com_(1)_(1).pdf

Cotta CV, Bueso-Ramos CE. New insights into the pathobiology and treatment of chronic myelogenous leukemia. Ann Diagn Pathol. 2007; 11(1): 68-78. DOI: 10.1016/j.anndiagpath.2006.12.002

Subbiah R, Veerapandian M, S Yun K. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2010; 17(36): 4559-4577. DOI: 10.2174/092986710794183024

Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 2021; 63: 102487. DOI: 10.1016/j.jddst.2021.102487

Sadr S, Poorjafari Jafroodi P, Haratizadeh MJ, Ghasemi Z, Borji H, Hajjafari A. Current status of nano‐vaccinology in veterinary medicine science. Vet Med Sci. 2023; 9(5): 2294-2308. DOI: 10.1002/vms3.1221

Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotechnol Biol Med. 2013; 9(1): 1-14. DOI: 10.1016/j.nano.2012.05.013

Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The nanosystems involved in treating lung cancer. Life. 2021; 11(7): 682. DOI: 10.3390/life11070682

Sahu MAK. Raman Micro-Spectroscopy Studies of Oral Cancerous and Premalignant Conditions: HOMI BHABHA NATL INST; 2016.

Barreto JA, O'Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011; 23(12): 18-40. DOI: 10.1002/adma.201100140

Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. J Drug Deliv Sci Technol. 2020; 60: 102018. DOI: 10.1016/j.jddst.2020.102018

Slivac I, Guay D, Mangion M, Champeil J, Gaillet B. Non-viral nucleic acid delivery methods. Expert Opin Biol Ther. 2017; 17(1): 105-118. DOI: 10.1080/14712598.2017.1248941

Ulldemolins A, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, et al. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist. 2021; 4(1): 44. DOI: 10.20517/cdr.2020.59

Aslam S, Rehman R, Alvi MU, Ahmed M, Mustafa G, Shahid M, et al. Antimicrobial Potential of Metallic Nano-Structures: Synthesis, Types, Applications, and Future Prospects. Sustainable Nanomaterials Biomed Eng: Impacts, Challenges, Future Prospects. 2023: 415. DOI: 10.1201/9781003333456-18

Singh J, Singh T, Rawat M. Green synthesis of silver nanoparticles via various plant extracts for anti-cancer applications. Nanomedicine. 2017; 7(3): 1-4. DOI: 10.19080/GJN.2017.02.555590

Perveen S, Al-Taweel AM. Green chemistry and synthesis of anticancer molecule. Green Chem. 2018: 51-72. DOI: 10.5772/intechopen.70419

Cyril N, George JB, Joseph L, Raghavamenon A, VP S. Assessment of antioxidant, antibacterial and anti-proliferative (lung cancer cell line A549) activities of green synthesized silver nanoparticles from Derris trifoliata. Toxicol Res. 2019; 8(2): 297-308. DOI: 10.1039/C8TX00323H

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2003; 28(4): 313-318. DOI: 10.1016/S0927-7765(02)00174-1

Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, et al. Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir. 2015; 31(42): 11605-11612. DOI: 10.1021/acs.langmuir.5b03081

Saifuddin N, Wong C, Yasumira A. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem. 2009; 6(1): 61-70. DOI: 10.1155/2009/734264

Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog. 2006; 22(2): 577-583. DOI: 10.1021/bp0501423

Yoshimura H. Protein-assisted nanoparticle synthesis. Colloids Surf A Physicochem Eng Asp. 2006; 282: 464-470. DOI: 10.1016/j.colsurfa.2006.01.037

Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: a review. Arab J Chem. 2019; 12(8): 3576-3600. DOI: 10.1016/j.arabjc.2015.11.002

Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longev. 2016; 3685671. DOI: 10.1155/2016/3685671

Gunaydin G, Gedik ME, Ayan S. Photodynamic therapy for the treatment and diagnosis of cancer-a review of the current clinical status. Front Chem. 2021; 9: 686303. DOI: 10.3389/fchem.2021.686303

dos Santos AF, de Almeida DQ, Terra LF, Baptista MS, Labriola L. Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat. 2019; 5(25): 10.20517. DOI: 10.20517/2394-4722.2018.83

Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021; 16(1): 173. DOI: 10.1186/s11671-021-03628-6

Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther. 2017: 2871-2890.

DOI: 10.2147/DDDT.S142337

Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012; 14: 1-16. DOI: 10.1146/annurev-bioeng-071811-150124

Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017; 46(14): 4218-4244. DOI: 10.1039/C6CS00636A

Yu Z, Fan W, Wang L, Qi J, Lu Y, Wu W. Effect of surface charges on oral absorption of intact solid lipid nanoparticles. Mol Pharm. 2019; 16(12): 5013-5024. DOI: 10.1021/acs.molpharmaceut.9b00861

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012: 5577-5591. DOI: 10.2147/IJN.S36111

Nam J, Won N, Bang J, Jin H, Park J, Jung S, et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev. 2013; 65(5): 622-648. DOI: 10.1016/j.addr.2012.08.015

Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008; 5(4): 505-515. DOI: 10.1021/mp800051m

Vivero‐Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010; 6(18): 1952-1967. DOI: 10.1002/smll.200901789

Telrandhe R. Anti-Cancer Potential of Green Synthesized Silver Nanoparticles-A Review. Asian J Pharm Technol. 2019; 9(4): 260-266. DOI: 10.5958/2231-5713.2019.00043.6

Das RP, Gandhi VV, Singh BG, Kunwar A. Passive and active drug targeting: role of nanocarriers in rational design of anticancer formulations. Curr Pharm Des. 2019; 25(28): 3034-3056. DOI: 10.2174/1381612825666190830155319

Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm. 2010; 7(6): 1913-1920. DOI: 10.1021/mp100253e

Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019; 11(6): e1571. DOI: 10.1002/wnan.1571

Saad M, Garbuzenko OB, Ber E, Chandna P, Khandare JJ, Pozharov VP, et al. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release. 2008; 130(2): 107-114. DOI: 10.1016/j.jconrel.2008.05.024

Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015; 141: 769-784. DOI: 10.1007/s00432-014-1767-3

Saaristo A, Karpanen T, Alitalo K. Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene. 2000; 19(53): 6122-6129. DOI: 10.1038/sj.onc.1203969

Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. 2009. DOI: 10.1115/1.3156800

Abdalla AM, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics. 2018; 8(2): 533. DOI: 10.7150/thno.21674

Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307(5706): 58-62. DOI: 10.1126/science.1104819

Bhattarai P, Hameed S, Dai Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale. 2018; 10(12): 5393-5423. DOI: 10.1039/C7NR09612G

Li M, Zhang F, Su Y, Zhou J, Wang W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci. 2018; 201: 37-44. DOI: 10.1016/j.lfs.2018.03.044

Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C. 2019; 98: 1252-1276. DOI: 10.1016/j.msec.2019.01.066

Ho D, Wang C-HK, Chow EK-H. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci Adv. 2015; 1(7): e1500439. DOI: 10.1126/sciadv.1500439

Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev. 2013; 65(5): 703-718. DOI: 10.1016/j.addr.2012.09.036

Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles-emerging potential for managing leukemia and lymphoma. Front Bioeng Biotechnol. 2017; 5: 79. DOI: 10.3389/fbioe.2017.00079

Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomed Nanotechnol Biol Med. 2016; 12(1): 81-103. DOI: 10.1016/j.nano.2015.08.006

Wan Z, Sun R, Moharil P, Chen J, Liu Y, Song X, et al. Research advances in nanomedicine, immunotherapy, and combination therapy for leukemia. J Leukoc Biol. 2021; 109(2): 425-436.

DOI: 10.1002/JLB.5MR0620-063RR

Tran S, DeGiovanni P-J, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017; 6: 1-21. DOI: 10.1186/s40169-017-0175-0

Chen KT, Militao GG, Anantha M, Witzigmann D, Leung AW, Bally MB. Development and characterization of a novel flavopiridol formulation for treatment of acute myeloid leukemia. J Control Release. 2021; 333: 246-257. DOI: 10.1016/j.jconrel.2021.03.042

Wiernik PH. Alvocidib (flavopiridol) for the treatment of chronic lymphocytic leukemia. Expert Opin Investig Drugs. 2016; 25(6): 729-734. DOI: 10.1517/13543784.2016.1169273

Makvandi P, Wang Cy, Zare EN, Borzacchiello A, Niu Ln, Tay FR. Metal‐based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv Funct Mater. 2020; 30(22): 1910021. DOI: 10.1002/adfm.201910021

Nave M, Castro RE, Rodrigues CM, Casini A, Soveral G, Gaspar MM. Nanoformulations of a potent copper-based aquaporin inhibitor with cytotoxic effect against cancer cells. Nanomedicine. 2016; 11(14): 1817-1830. DOI: 10.2217/nnm-2016-0086

Saravanan M, Vahidi H, Medina Cruz D, Vernet-Crua A, Mostafavi E, Stelmach R, et al. Emerging antineoplastic biogenic gold nanomaterials for breast cancer therapeutics: a systematic review. Int J Nanomedicine. 2020: 3577-3595. DOI: 10.2147/IJN.S240293

Barabadi H, Webster TJ, Vahidi H, Sabori H, Kamali KD, Shoushtari FJ, et al. Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: a systematic review. Iran J Pharm Res. 2020; 19(3): 3. DOI: 10.22037/ijpr.2020.113820.14504

Rodriguez-Garraus A, Azqueta A, Vettorazzi A, Lopez de Cerain A. Genotoxicity of silver nanoparticles. Nanomaterials. 2020; 10(2): 251. DOI: 10.3390/nano10020251

Durán N, Seabra AB, de Lima R. Cytotoxicity and genotoxicity of biogenically synthesized silver nanoparticles. Nanotoxicology. 2013; 7(4): 127-138. DOI: 10.1007/978-1-4614-8993-1_11

Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014; 103(7): 1931-1944. DOI: 10.1002/jps.24001

Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine. 2011; 6(5): 879-898. DOI: 10.2217/nnm.11.78

Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine. 2017; 12: 6487-6502. DOI: 10.2147/IJN.S135482

Covarrubias L, Hernández-García D, Schnabel D, Salas-Vidal E, Castro-Obregón S. Function of reactive oxygen species during animal development: passive or active? Dev Biol. 2008; 320(1): 1-11. DOI: 10.1016/j.ydbio.2008.04.041

Hembram KC, Kumar R, Kandha L, Parhi PK, Kundu CN, Bindhani BK. Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif Cells Nanomed Biotechnol. 2018; 46(3): 38-51. DOI: 10.1080/21691401.2018.1489262

Khorrami S, Zarepour A, Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. Biotechnol Rep. 2019; 24: e00393.DOI: 10.1016/j.btre.2019.e00393

Yesilot S, Aydin C. Silver nanoparticles; a new hope in cancer therapy? East J Med. 2019; 24(1): 111-116. DOI: 10.5505/ejm.2019.66487

Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, et al. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem. 2012; 47(2): 273-279. DOI: 10.1016/j.procbio.2011.11.003

Pisárčik M, Lukáč M, Jampílek J, Bilka F, Bilková A, Pašková Ľ, et al. Phosphonium surfactant stabilised silver nanoparticles. Correlation of surfactant structure with physical properties and biological activity of silver nanoparticles. J Mol Liq. 2020; 314: 113683. DOI: 10.1016/j.molliq.2020.113683

Ning L, Zhu B, Gao T. Gold nanoparticles: promising agent to improve the diagnosis and therapy of cancer. Curr Drug Metab. 2017; 18(11): 1055-1067. DOI: 10.2174/1389200218666170925122513

Siddique S, Chow JC. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020; 10(11): 3824. DOI: 10.3390/app10113824

Mikhailova EO. Gold nanoparticles: biosynthesis and potential of biomedical application. J Funct Biomater. 2021; 12(4): 70. DOI: 10.3390/jfb12040070

Laskar YB, Mazumder PB. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomed Pharmacother. 2020; 127: 110153. DOI: 10.1016/j.biopha.2020.110153

Sargazi S, Laraib U, Er S, Rahdar A, Hassanisaadi M, Zafar MN, et al. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials. 2022; 12(7): 1102. DOI: 10.3390/nano12071102

Zangeneh MM, Zangeneh A. Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti‐acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl Organomet Chem. 2020; 34(1): e5271.DOI: 10.1002/aoc.5271

Ahmeda A, Zangeneh MM. Novel green synthesis of Boswellia serrata leaf aqueous extract conjugated gold nanoparticles with excellent anti‐acute myeloid leukemia property in comparison to mitoxantrone in a leukemic mice model: Introducing a new chemotherapeutic drug. Appl Organomet Chem. 2020; 34(3): e5344 DOI: 10.1002/aoc.5344

Ahmeda A, Zangeneh MM, Zangeneh A. Green formulation and chemical characterization of Lens culinaris seed aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to mitoxantrone in a leukemic mouse model. Appl Organomet Chem. 2020; 34(3): e5369. DOI: 10.1002/aoc.5369

Hemmati S, Joshani Z, Zangeneh A, Zangeneh MM. Green synthesis and chemical characterization of Thymus vulgaris leaf aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Appl Organomet Chem. 2020; 34(2): e5267. DOI: 10.1002/aoc.5267

Huang Y, Haw CY, Zheng Z, Kang J, Zheng JC, Wang HQ. Biosynthesis of zinc oxide nanomaterials from plant extracts and future green prospects: a topical review. Adv Sustainable Syst. 2021; 5(6): 2000266. DOI: 10.1002/adsu.202000266

Thema F, Manikandan E, Dhlamini M, Maaza M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett. 2015; 161: 124-127. DOI: 10.1016/j.matlet.2015.08.052

Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater Today Commun. 2020; 25: 101692. DOI: 10.1016/j.mtcomm.2020.101692

Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM. Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb Technol. 2018; 117: 91-95. DOI: 10.1016/j.enzmictec.2018.06.009

Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, et al. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers. 2021; 13(11): 2818. DOI: 10.3390/cancers13112818

Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A Review. OpenNano. 2022: 100077. DOI: 10.1016/j.onano.2022.100077

Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010; 7 (9): 1063-77. DOI: 10.1517/17425247.2010.502560

Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J Indian Chem Soc. 2023: 100987. DOI: 10.1016/j.jics.2023.100987

Zhao X, Wang S, Wu Y, You H, Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol. 2013; 136: 49-59. DOI: 10.1016/j.aquatox.2013.03.019

Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013; 2013. DOI: 10.1155/2013/942916

Zhou M, Tian M, Li C. Copper-based nanomaterials for cancer imaging and therapy. Bioconjug Chem. 2016;27(5):1188-1199. DOI: 10.1021/acs.bioconjchem.6b00156

Nagajyothi P, Muthuraman P, Sreekanth T, Kim DH, Shim J. Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian J Chem. 2017; 10(2): 215-225. DOI: 10.1016/j.arabjc.2016.01.011

Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017; 89: 1067-1077. DOI: 10.1016/j.biopha.2017.02.101

Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. JBIC J Biol Inorg Chem. 2019; 24: 929-941. DOI: 10.1007/s00775-019-01717-7

Sulaiman GM, Tawfeeq AT, Jaaffer MD. Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol Prog. 2018;34(1):218-230. DOI: 10.1002/btpr.2568

Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C. 2014; 44: 234-239. DOI: 10.1016/j.msec.2014.08.030

Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B Biointerfaces. 2012; 95: 284-288. DOI: 10.1016/j.colsurfb.2012.03.005

Prasad PR, Kanchi S, Naidoo E. In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach. J Photochem Photobiol B Biol. 2016; 161: 375-382. DOI: 10.1016/j.jphotobiol.2016.06.008

Li X, Wei L, Pan L, Yi Z, Wang X, Ye Z, et al. Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Anal Chem. 2018; 90(7): 4807-4814. DOI: 10.1021/acs.analchem.8b00251

Xu X, Farach-Carson MC, Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv. 2014; 32(7): 1256-1268. DOI: 10.1016/j.biotechadv.2014.07.009

Cook GJ, Pardee TS. Animal models of leukemia: any closer to the real thing? Cancer Metastasis Rev. 2013; 32: 63-76. DOI: 10.1007/s10555-012-9405-5

Kohnken R, Porcu P, Mishra A. Overview of the use of murine models in leukemia and lymphoma research. Front Oncol. 2017; 7: 22. DOI: 10.3389/fonc.2017.00022

Jin KT, Du WL, Lan HR, Liu YY, Mao CS, Du JL, et al. Development of humanized mouse with patient‐derived xenografts for cancer immunotherapy studies: A comprehensive review. Cancer Sci. 2021; 112(7): 2592-2606. DOI: 10.1111/cas.14934

Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today. 2018; 23(5): 974-991. DOI: 10.1016/j.drudis.2018.01.047

Dawidczyk CM, Russell LM, Searson PC. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem. 2014; 2: 69. DOI: 10.3389/fchem.2014.00069

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37. DOI: https://doi.org/10.1038/nrc.2016.108

N'Djin WA, Melodelima D, Parmentier H, Chesnais S, Rivoire M, Chapelon JY. Utility of a tumor-mimic model for the evaluation of the accuracy of HIFU treatments. Results of in vitro experiments in the liver. Ultrasound Med Biol. 2008; 34(12): 1934-1943. DOI: 10.1016/j.ultrasmedbio.2008.04.012

Ziolkowska K, Kwapiszewski R, Brzozka Z. Microfluidic devices as tools for mimicking the in vivo environment. New J Chem. 2011; 35(5): 979-990. DOI: 10.1039/c0nj00709a

Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech. 2017; 10(4): 359-371. DOI: 10.1242/dmm.028274

Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. Preclinical murine tumor models: a structural and functional perspective. Elife. 2020; 9: e50740. DOI: 10.7554/eLife.50740

Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007; 170(3): 793-804. DOI: 10.2353/ajpath.2007.060929

Kyriakakis E, Markaki M, Tavernarakis N. Caenorhabditis elegans as a model for cancer research. Mol Cell Oncol. 2015; 2(2): e975027. DOI: 10.4161/23723556.2014.975027

Hajjafari A, Simab PA, Sadr S, Lotfalizadeh N, Borji H. Caenorhabditis elegans as a Valuable Model for Studying Apoptosis and Autophagy in Cancer Development: Current insights, Future directions, and Challenges. J Lab Anim Res. 2022; 1(1): 41-46. DOI: 10.58803/jlar.v1i1.12

Hason M, Bartůněk P. Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes. 2019; 10(11): 935. DOI: 10.3390/genes10110935

Tsyusko OV, Unrine JM, Spurgeon D, Blalock E, Starnes D, Tseng M, et al. Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ Sci Technol. 2012; 46(7): 4115-4124. DOI: 10.1021/es2033108

Griffitt RJ, Lavelle CM, Kane AS, Denslow ND, Barber DS. Chronic nanoparticulate silver exposure results in tissue accumulation and transcriptomic changes in zebrafish. Aquat Toxicol. 2013; 130: 192-200. DOI: 10.1016/j.aquatox.2013.01.010

Hu CC, Wu GH, Lai SF, Muthaiyan Shanmugam M, Hwu Y, Wagner OI, et al. Toxic effects of size-tunable gold nanoparticles on Caenorhabditis elegans development and gene regulation. Sci Rep. 2018; 8(1): 15245.DOI: 10.1038/s41598-018-33585-7

Botha TL, Brand SJ, Ikenaka Y, Nakayama SM, Ishizuka M, Wepener V. How toxic is a non-toxic nanomaterial: Behaviour as an indicator of effect in Danio rerio exposed to nanogold. Aquat Toxicol. 2019; 215: 105287. DOI: 10.1016/j.aquatox.2019.105287

Cambier S, Røgeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, et al. Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Sci Total Environ. 2018; 610: 972-982. DOI: 10.1016/j.scitotenv.2017.08.115

Ghobashy MM, Elkodous MA, Shabaka SH, Younis SA, Alshangiti DM, Madani M, et al. An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment. Nanotechnology Reviews. 2021; 10(1): 954-977. DOI: 10.1515/ntrev-2021-0066

Bootorabi F, Manouchehri H, Changizi R, Barker H, Palazzo E, Saltari A, et al. Zebrafish as a model organism for the development of drugs for skin cancer. Int J Mol Sci. 2017; 18(7): 1550. DOI: 10.3390/ijms18071550

Walrath JC, Hawes JJ, Van Dyke T, Reilly KM. Genetically engineered mouse models in cancer research. Adv Cancer Res. 2010; 106: 113-164. DOI: 10.1016/S0065-230X(10)06004-5

Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GLG, Wides R, et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science. 2002; 296(5573): 1661-1671. DOI: 10.1126/science.1069193

Maser RS, Choudhury B, Campbell PJ, Feng B, Wong K-K, Protopopov A, et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature. 2007; 447(7147): 966-971. DOI: 10.1038/nature05886

Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, et al. Application of animal models in cancer research: recent progress and future prospects. Cancer Management and Research. 2021: 2455-2475. DOI: 10.2147/CMAR.S302565

Blaas L, Pucci F, Messal HA, Andersson AB, Ruiz EJ, Gerling M, et al. Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours. Nat Cell Biol. 2016; 18(12):1346-1356. DOI: 10.1038/ncb3434

Politi K, Pao W. How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol. 2011; 29(16): 2273. DOI: 10.1200/JCO.2010.30.8304

Georges LM, De Wever O, Galván JA, Dawson H, Lugli A, Demetter P, et al. Cell line derived xenograft mouse models are a suitable in vivo model for studying tumor budding in colorectal cancer. Front Med (Lausanne). 2019; 6: 139. DOI: 10.3389/fmed.2019.00139

Jin K, Teng L, Shen Y, He K, Xu Z, Li G. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 2010; 12: 473-480. DOI: 10.1007/s12094-010-0540-6

Lallo A, Schenk MW, Frese KK, Blackhall F, Dive C. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res. 2017; 6(4): 397. DOI: 10.21037/tlcr.2017.08.01

Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: Technologies and applications. Signal Transduct Target Ther. 2023; 8(1): 160. DOI: 10.1038/s41392-023-01419-2

Taha RH. Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. Inorg Chem Commun. 2022; 143: 109610. DOI: 10.1016/j.inoche.2022.109610

Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AS, Shim YY, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. 2020; 12(4): 855. DOI: 10.3390/cancers12040855

Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives. Nanoscale. 2017; 9(43): 16773-16790. DOI: 10.1039/C7NR04979J

Heinemann MG, Rosa CH, Rosa GR, Dias D. Biogenic synthesis of gold and silver nanoparticles used in environmental applications: A review. Trends Environ Anal Chem. 2021; 30: e00129. DOI: 10.1016/j.teac.2021.e00129

Jan H, Gul R, Andleeb A, Ullah S, Shah M, Khanum M, et al. A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications. J Saudi Chem Soc. 2021; 25(8): 101297. DOI: 10.1016/j.jscs.2021.101297

Sadr S, Lotfalizadeh N, Abbasi AM, Soleymani N, Hajjafari A, Moghadam ER, et al. Challenges and Prospective of Enhancing Hydatid Cyst Chemotherapy by Nanotechnology and the Future of Nanobiosensors for Diagnosis. Trop Med Infect Dis. 2023; 8(11): 494. DOI: 10.3390/tropicalmed8110494

Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012; 14(2): 282-295. DOI: 10.1208/s12248-012-9339-4

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian J Chem. 2019; 12(7): 908-931. DOI: 10.1016/j.arabjc.2017.05.011

Ramanathan A. Toxicity of nanoparticles: challenges and opportunities. Appl Microsc. 2019; 49(1): 2. DOI: 10.1007/s42649-019-0004-6

Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol‐containing nanoparticles: synthesis, properties, and therapeutic delivery. Adv Mater. 2021; 33(22): 2007356. DOI: 10.1002/adma.202007356

Gaillet S, Rouanet JM. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms-a review. Food Chem Toxicol. 2015; 77: 58-63. DOI: 10.1016/j.fct.2014.12.019

Lategan KL, Walters CR, Pool EJ. The effects of silver nanoparticles on RAW 264.7 Macrophages and human whole blood cell cultures. 2019; 24(2): 347-365. DOI: 10.2741/4722

Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015; 20(5): 595-601. DOI: 10.1016/j.drudis.2014.11.014

Wen H, Dan M, Yang Y, Lyu J, Shao A, Cheng X, et al. Acute toxicity and genotoxicity of silver nanoparticle in rats. PloS One. 2017; 12(9): e0185554. DOI: 10.1371/journal.pone.0185554

De Jong WH, Van Der Ven LT, Sleijffers A, Park MV, Jansen EH, Van Loveren H, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013; 34(33): 8333-8343. DOI: 10.1016/j.biomaterials.2013.06.048

Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, et al. Silver nanoparticles as potential antiviral agents. Pharmaceutics. 2021; 13(12): 2034. DOI: 10.3390/pharmaceutics13122034

Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020; 21(7): 2375. DOI: 10.3390/ijms21072375

Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012; 6(6): 667-669. DOI: 10.3109/17435390.2011.600840

Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol. 2012; 5(1): 1-16. DOI: 10.1186/s13045-015-0229-y

Bicho A, Peca IN, Roque A, Cardoso MM. Anti-CD8 conjugated nanoparticles to target mammalian cells expressing CD8. Int J Pharm. 2010; 399(1-2): 80-86. DOI: 10.1016/j.ijpharm.2010.08.005

Kızılbey K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega. 2019; 4(1) :555-562. DOI: 10.1021/acsomega.8b02767

McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci. 2011; 104: 563-601. DOI: 10.1016/B978-0-12-416020-0.00014-0

Saber MM. Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf B Biointerfaces. 2019; 183: 110407. DOI: 10.1016/j.colsurfb.2019.110407

List AF. Vascular endothelial growth factor signaling pathway as an emerging target in hematologic malignancies. Oncologist. 2001; 6(5): 24-31. DOI: 10.1634/theoncologist.6-suppl_5-24

Wang L, Zhang W-j, Xiu B, Ding Y, Li P, Zhu Q, et al. Nanocomposite-siRNA approach for down-regulation of VEGF and its receptor in myeloid leukemia cells. Int J Biol Macromol. 2014; 63:49-55. DOI: 10.1016/j.ijbiomac.2013.10.028

Krishnan V, Xu X, Barwe SP, Yang X, Czymmek K, Waldman SA, et al. Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: a novel application in pediatric nanomedicine. Mol Pharm. 2013; 10(6): 2199-2210. DOI: https://doi.org/10.1021/mp300350e

Acharya S, Sahoo SK. Sustained targeting of Bcr-Abl+ leukemia cells by synergistic action of dual drug-loaded nanoparticles and its implication for leukemia therapy. Biomaterials. 2011; 32(24): 5643-5662. DOI: 10.1016/j.biomaterials.2011.04.043

Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B Biol. 2008; 93(3): 119-126. DOI: 10.1016/j.jphotobiol.2008.07.009

Zhou P, Hatziieremia S, Elliott MA, Scobie L, Crossan C, Michie AM, et al. Uptake of synthetic Low-Density Lipoprotein by leukemic stem cells-a potential stem cell targeted drug delivery strategy. J Control Release. 2010;148(3):380-387. DOI: 10.1016/j.jconrel.2010.09.016

Most read articles by the same author(s)