In Vivo Stem Cell Discoveries: Promising Implications in Cancer Therapy
Main Article Content
Abstract
The remarkable regenerative abilities and versatility of stem cells have long attracted researchers. Recently, in vivo studies have revealed exciting results related to stem cells, particularly their use in cancer treatment. This review will provide an overview of these discoveries and their broader implications for the future.
There is growing in vivo evidence that stem cells have immense therapeutic potential in treating various diseases, including cancer, because of their self-renewal and differentiation capabilities. As a result of in vivo research, critical aspects of stem cell behavior within tumor microenvironments have been clarified, providing a deeper understanding of their potential therapeutic utility. Several in vivo studies have demonstrated the potential of stem cell-engineered tumor-targeting agents or therapeutic payloads for the precise delivery of medicinal drugs when these agents are engineered to express them in tumor cells. Through targeted therapies, off-target effects can be minimized, and the therapeutic index of the anti-cancer agents can be improved. Several stem cell-based delivery systems have shown remarkable efficacy in preclinical in vivo studies, including breast, lung, and pancreatic cancer, indicating their potential as a novel therapeutic strategy. Moreover, in vivo studies have revealed that the immunomodulatory properties of stem cells modulate the immune response and modify the tumor microenvironment to suppress it. In particular, using checkpoint inhibitor therapy with stem cells has paved the way for innovative immunotherapeutic strategies. Research on stem cells in vivo has also provided invaluable insights into stem cell biology and their interaction with cancer cells. Due to these findings, there is an increasing understanding of tumor initiation, progression, and resistance mechanisms, which has opened avenues for improving cancer treatment by developing more effective treatments. As a result of the in vivo studies that have taken place so far, there is a wealth of information regarding the potential of stem cells in cancer treatment. This research opens up exciting prospects for the future of oncology, from the delivery of targeted drugs to immunomodulation and improving our understanding of tumor biology.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clini. 2018; 68(6): 394-424. DOI: https://doi.org/10.3322/caac.21492
Dragu DL, Necula LG, Bleotu C, Diaconu CC and Chivu-Economescu M. Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cell. 2015; 7(9): 1185. DOI: https://doi.org/10.4252/wjsc.v7.i9.1185
Asouli A, Sadr S, Mohebalian H and Borji H. Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562. Acta Parasitol. 2023; 1-8. DOI: https://doi.org/10.1007/s11686-023-00680-3
Sadr S and Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. Curr Cancer Ther Rev. 2023; 19(4): 292-297. DOI: https://doi.org/10.2174/1573394719666230427094247
Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A and Borji H. Antitumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anti-Cancer Agents Med Chem. 2023; DOI: https://doi.org/10.2174/1871520623666230529141544
Sadr S, Yousefsani Z, Simab PA, Alizadeh HJR, Lotfalizadeh A and Borji H. Trichinella spiralis as a Potential Antitumor Agent: An Update. World Vet J. 2023; 13: 65-74. DOI: https://doi.org/10.54203/scil.2023.wvj7
Rich JN. Cancer stem cells: understanding tumor hierarchy
and heterogeneity. Med. 2016; 95(Suppl 1). DOI: https://doi.org/10.1097/MD.0000000000004764
Croker AK and Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008; 12(2): 374-390. DOI: https://doi.org/10.1111/j.1582-4934.2007.00211.x
Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, Chrystel I, Morandi U, Stella F, Dominici M, and Haider KH. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancer. 2022; 14(4): 976. DOI: https://doi.org/10.3390/cancers14040976
Cruceru ML, Neagu M, Demoulin JB and Constantinescu SN. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms. J Cell Mol Med. 2013; 17(10): 1218-1235. DOI: https://doi.org/10.1111/jcmm.12122
Sneha S, Nagare RP, Priya SK, Sidhanth C, Pors K and Ganesan TS. Therapeutic antibodies against cancer stem cells: a promising approach. Cancer Immunology, Immunother. 2017; 66: 1383-1398. DOI: https://doi.org/10.1007/s00262-017-2049-0
Ju F, Atyah MM, Horstmann N, Gul S, Vago R, Bruns CJ, Zhao Y, Dong Q-Z and Ren N. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther. 2022; 13(1): 1-17. DOI: https://doi.org/10.1186/s13287-022-02904-1
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA and Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009; 138(4): 645-659. DOI: https://doi.org/10.1016/j.cell.2009.06.034
Borah A, Raveendran S, Rochani A, Maekawa T and Kumar D. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis. 2015; 4(11): e177-e. DOI: https://doi.org/10.1038/oncsis.2015.35
Raghav PK and Mann Z. Cancer stem cells targets and combined therapies to prevent cancer recurrence. Life Sci. 2021; 277: 119465. DOI: https://doi.org/10.1016/j.lfs.2021.119465
Vinogradov S and Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomed. 2012; 7(4): 597-615. DOI: https://doi.org/10.2217/nnm.12.22
Khan AQ, Ahmed EI, Elareer NR, Junejo K, Steinhoff M and Uddin S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells. 2019; 8(8): 840. DOI: https://doi.org/10.3390/cells8080840
Silva VR, Santos LdS, Dias RB, Quadros CA and Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Comm. 2021; 41(12): 1275-1313. DOI: https://doi.org/10.1002/cac2.12235
Bisht S, Nigam M, Kunjwal SS, Sergey P, Mishra AP and Sharifi-Rad J. Cancer stem cells: from an insight into the basics to recent advances and therapeutic targeting. Stem Cell Int. 2022; 2022. DOI: https://doi.org/10.1155/2022/9653244
Rad SMAH, Bamdad T, Sadeghizadeh M, Arefian E, Lotfinia M and Ghanipour M. Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy. Tumor Bio. 2015; 36: 2621-2629. DOI: https://doi.org/10.1007/s13277-014-2884-y
Ayob AZ and Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018; 25: 1-18. DOI: https://doi.org/10.1186/s12929-018-0426-4
Fang D and Kitamura H. Cancer stem cells and epithelial–mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Uro. 2018; 25(1): 7-17. DOI: https://doi.org/10.1111/iju.13404
Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert opinion on therapeutic targets. 2015; 19(2): 285-297. DOI: https://doi.org/10.1517/14728222.2014.975794
Householder NA, Raghuram A, Agyare K, Thipaphay S and Zumwalt M. A Review of Recent Innovations in Cartilage Regeneration Strategies for the Treatment of Primary Osteoarthritis of the Knee: Intra-articular Injections. Orthopa J Sp Me. 2023; 11(4): 23259671231155950. DOI: https://doi.org/10.1177/23259671231155950
López de Andrés J, Griñán-Lisón C, Jiménez G and Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol. 2020; 13(1): 1-22. DOI: https://doi.org/10.1186/s13045-020-00966-3
Bonnet D and Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997; 3(7): 730-737. DOI: https://doi.org/10.1038/nm0797-730
Kaufhold S and Garbán H, Bonavida B. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res. 2016; 35(1): 1-14. DOI: https://doi.org/10.1186/s13046-016-0359-2
Makena MR, Ranjan A, Thirumala V and Reddy AP. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochimica et Biophysica Acta (BBA)-Mol Bas Dis. 2020; 1866(4): 165339. DOI: https://doi.org/10.1016/j.bbadis.2018.11.015
Marine J-C, Dawson S-J and Dawson MA. Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer. 2020; 20(12): 743-756. DOI: https://doi.org/10.1038/s41568-020-00302-4
Chik F, Szyf M and Rabbani SA. Role of epigenetics in cancer initiation and progression. Human Cell Transform: Role Stem Cell Microenv. 2012; 91-104. DOI: https://doi.org/10.1007/978-1-4614-0254-1_8
Wang RA, Li ZS, Zhang HZ, Zheng PJ, Li QL, Shi JG, Yan QG, Ye J, Wang JB, Huo Y, Huang XF and Yu YH. Invasive cancers are not necessarily from preformed in situ tumours—An alternative way of carcinogenesis from misplaced stem cells. J Cell Mol Med. 2013; 17(7): 921-926. DOI: https://doi.org/10.1111/jcmm.12078
Testa U, Pelosi E and Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci. 2018; 6(2): 31. DOI: https://doi.org/10.3390/medsci6020031
Britton KM, Kirby JA, Lennard TW and Meeson AP. Cancer stem cells and side population cells in breast cancer and metastasis. Cancer. 2011; 3(2): 2106-2130. DOI: https://doi.org/10.3390/cancers3022106
Brons IGM, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA and Vallier L. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nat. 2007; 448(7150): 191-195. DOI: https://doi.org/10.1038/nature05950
Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Health PR, Holden H and Andrews PW. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotech. 2007; 25(2): 207-215. DOI: https://doi.org/10.1038/nbt1285
Dreesen O and Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007; 3: 7-17. DOI: https://doi.org/10.1007/s12015-007-0004-8
Postovit L-M, Margaryan NV, Seftor EA, Kirschmann DA, Lipavsky A, Wheaton WW, Abbot DE, Seftor REB and Hendrix MJC. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. PNAS. 2008; 105(11): 4329-4334. DOI: https://doi.org/10.1073/pnas.0800467105
Park JW, Fu S, Huang B and Xu R-H. Alternative splicing in mesenchymal stem cell differentiation. Stem Cell. 2020; 38(10): 1229-1240. DOI: https://doi.org/10.1002/stem.3248
Najar M, Fahmi H and Merimi M. The Medicinal Potential of Mesenchymal Stem/Stromal Cells in Immuno-and Cancer Therapy. MDPI. 2023; 1171. DOI: https://doi.org/10.3390/biom13081171
Ramírez Idarraga JA and Restrepo Múnera LM. Mesenchymal Stem Cells: Their role in the tumor microenvironment. Tissue Engi P B: Rev. 2023; DOI: https://doi.org/10.1089/ten.teb.2023.0048
Chauhan A, Agarwal S, Masih M and Gautam PK. The Multifunction Role of Tumor-Associated Mesenchymal Stem Cells and Their Interaction with Immune Cells in Breast Cancer. Immunol Investigat. 2023; 52(7): 856-878. DOI: https://doi.org/10.1080/08820139.2023.2249025
Zhang T, Lin R, Wu H, Jiang X and Gao J. Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deli Rev. 2022; 185: 114300. DOI: https://doi.org/10.1016/j.addr.2022.114300
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021; 20(1): 1-30. DOI: https://doi.org/10.1186/s12943-021-01428-1
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S and Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. 2021; 12(1): 1-30. DOI: https://doi.org/10.1186/s13287-021-02265-1
Ma Z, Hua J, Liu J, Zhang B, Wang W, Yu X and Xu J. Mesenchymal stromal cell-based targeted therapy pancreatic cancer: Progress and challenges. Int J Mol Sci. 2023; 24(4): 3559. DOI: https://doi.org/10.3390/ijms24043559
Huang L, Xu D, Qian Y, Zhang X, Guo H, Sha M, Hu R, Kong X, Xia Q and Zhang Y. A gene signature is critical for intrahepatic cholangiocarcinoma stem cell self-renewal and chemotherapeutic response. Stem Cell Res Ther. 2022; 13(1): 1-18. DOI: https://doi.org/10.1186/s13287-022-02988-9
Conti L, Lanzardo S, Arigoni M, Antonazzo R, Radaelli E, Cantarella D, Calogera RA and Cavallo F. The noninflammatory role of high mobility group box 1/toll‐like receptor 2 axis in the self‐renewal of mammary cancer stem cells. The FASEB J. 2013; 27(12): 4731-4744. DOI: https://doi.org/10.1096/fj.13-230201
Matsui WH. Cancer stem cell signaling pathways. Med. 2016; 95(Suppl 1). DOI: https://doi.org/10.1097/MD.0000000000004765
Liu S, Dontu G and Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005; 7: 1-10. DOI: https://doi.org/10.1186/bcr1021
Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J and Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells. 2015; 7(9): 1150. DOI: https://doi.org/10.4252/wjsc.v7.i9.1150
Nilendu P, Kumar A, Kumar A, Pal JK and Sharma NK. Breast cancer stem cells as last soldiers eluding therapeutic burn: a hard nut to crack. Int J Cancer. 2018; 142(1): 7-17. DOI: https://doi.org/10.1002/ijc.30898
Chen Y, Chen Z-y, Chen L, Zhang J-y, Fu L-y, Tao L, Zhang Y, Hu X-X and Shen XC. Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling. Biochem Pharmacol. 2019; 166: 33-45. DOI: https://doi.org/10.1016/j.bcp.2019.05.001
Brittan M and Wright NA. Gastrointestinal stem cells. J Patho: J Patho Soci Gr Brit Ire. 2002; 197(4): 492-509. DOI: https://doi.org/10.1002/path.1155
Nguyen VHL, Hough R, Bernaudo S and Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res. 2019; 12: 1-17. DOI: https://doi.org/10.1186/s13048-019-0596-z
Gao M, Choi Y, Kang S, Youn J and Cho N. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010; 29(18): 2672-2680. DOI: https://doi.org/10.1038/onc.2010.35
Yehia S, Abdel-Salam IM, Elgamal BM, El-Agamy B, Hamdy GM and Aldesouki HM. Cytotoxic and apoptotic effects of Luffa cylindrica leaves extract against acute lymphoblastic leukemic stem cells. Asian Paci J Cancer Prevent: APJCP. 2020;21(12):3661. DOI: https://doi.org/10.31557/APJCP.2020.21.12.3661
Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z and Wang X. CD44-targeted magnetic nanoparticles kill head and neck squamous cell carcinoma stem cells in an alternating magnetic field. Int J Nanomed. 2019; 7549-7560. DOI: https://doi.org/10.2147/IJN.S215087
Al-Hajj M and Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004; 23(43): 7274-7282. DOI: https://doi.org/10.1038/sj.onc.1207947
Bak RO and Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdisciplinar Rev: RNA. 2014; 5(3): 317-333. DOI: https://doi.org/10.1002/wrna.1213
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BKH, Sethi B and Bishayee A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014; 1845(2): 136-154. DOI: https://doi.org/10.1016/j.bbcan.2013.12.005
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BKH, Sethi G and Bishayee A. Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. Biochimica et Biophysica Acta (BBA) - Rev Cancer. 2014; 1845(2): 136-154. DOI: https://doi.org/10.1016/j.bbcan.2013.12.005
Rheinbay E, Suvà ML, Gillespie SM, Wakimoto H, Patel AP, Shahid M, Oksuz O, Rabkin SD, Martuza RL, Rivera MN, Louis DN and Kasif S.An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 2013; 3(5): 1567-1579. DOI: https://doi.org/10.1016/j.celrep.2013.04.021
Kunnumakkara AB, Anand P and Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008; 269(2): 199-225. DOI: https://doi.org/10.1016/j.canlet.2008.03.009
Rycaj K and Tang DG. Cancer stem cells and radioresistance. Int J Radiat Bio. 2014; 90(8): 615-621. DOI: https://doi.org/10.3109/09553002.2014.892227
Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, Malout D, Gillat D and Li Y. Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 2016; 7(10): 11002. DOI: https://doi.org/10.18632/oncotarget.6760
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA and Núñez MI. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 2020; 9(7): 1651. DOI: https://doi.org/10.3390/cells9071651
Iiizumi M, Liu W, Pai SK, Furuta E and Watabe K. Drug development against metastasis-related genes and their pathways: A rationale for cancer therapy. Biochimica et Biophysica Acta (BBA) - Rev Cancer. 2008; 1786(2): 87-104. DOI: https://doi.org/10.1016/j.bbcan.2008.07.002
Chaudhary A, Raza SS and Haque R. Transcriptional factors targeting in cancer stem cells for tumor modulation. Semin Cancer Bio. 2023; 88: 123-137. DOI: https://doi.org/10.1016/j.semcancer.2022.12.010
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A and Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Bio. Elsevier. 2022; DOI: https://doi.org/10.1016/j.semcancer.2022.07.009
Li F and Mahato RI. MicroRNAs and drug resistance in prostate cancers. Mol Pharmaceutics. 2014; 11(8): 2539-2552. DOI: https://doi.org/10.1021/mp500099g
Hu Y-Y, Zheng M-h, Zhang R, Liang Y-M and Han H. Notch signaling pathway and cancer metastasis. Notch Signal Embryol Cancer. 2012; 186-198. DOI: https://doi.org/10.1007/978-1-4614-0899-4_14
Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, DiMeci D, Piccirillo S, Vescovi AL and Eberhart CG. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cell. 2010; 28(1): 5-16. DOI: https://doi.org/10.1002/stem.254
Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B and Miele L. Targeting Notch to target cancer stem cells. Clin Cancer Res. 2010; 16(12): 3141-3152. DOI: https://doi.org/10.1158/1078-0432.CCR-09-2823
Osanyingbemi-Obidi J, Dobromilskaya I, Illei PB, Hann CL and Rudin CM. Notch signaling contributes to lung cancer clonogenic capacity in vitro but may be circumvented in tumorigenesis in vivo. Mol Cancer Res. 2011; 9(12): 1746-1754. DOI: https://doi.org/10.1158/1541-7786.MCR-11-0286
Takezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu Ji and Kondo T. Essential role of the Hedgehog signaling pathway in human glioma‐initiating cells. Cancer Sci. 2011; 102(7): 1306-1312. DOI: https://doi.org/10.1111/j.1349-7006.2011.01943.x
Fu Q, Liu P, Sun X, Huang S, Han F, Zhang L, Xu Y and Liu T. Ribonucleic acid interference knockdown of IL-6 enhances the efficacy of cisplatin in laryngeal cancer stem cells by down-regulating the IL-6/STAT3/HIF1 pathway. Cancer Cell Int. 2017; 17(1): 1-13. DOI: https://doi.org/10.1186/s12935-017-0448-0
Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, Packer RJ, Goldman S, Prados MD, Desjardins A, Chintagumpala M, Takebe N, Kaste SC, Rusch M, Allen SJ, Onar-Thomas A, Stewart CF, Fouladi M, Boyett JM, Gilbertson RJ, Curran T, Ellison DW and Gajjar A. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog–subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and
PBTC-032. J Clin Oncol. 2015; 33(24): 2646. DOI: https://doi.org/10.1200/JCO.2014.60.1591
Iovine V, Mori M, Calcaterra A, Berardozzi S and Botta B. One hundred faces of cyclopamine. Current pharmaceutical design. 2016; 22(12): 1658-1681. DOI: https://doi.org/10.2174/1381612822666160112130157
Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, Li J, Zhang J, Sheng W, Zhao Y, Wu Y and Chen C. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscal. 2015; 7(18): 8607-8618. DOI: https://doi.org/10.1039/C5NR01084E
Nickho H, Younesi V, Aghebati-Maleki L, Motallebnezhad M, Majidi Zolbanin J, Movassagh Pour A and Yousefi M. Developing and characterization of single chain variable fragment (scFv) antibody against frizzled 7 (Fzd7) receptor. Bioengin. 2017; 8(5): 501-510. DOI: https://doi.org/10.1080/21655979.2016.1255383
Jin H, Wang B, Li J, Xie W, Mao Q, Li S, Dong F, Sun Y, Ke HZ, Babij P and Chen D. Anti-DKK1 antibody promotes bone fracture healing through activation of beta-catenin signaling. Bone. 2015; 71: 63-75. DOI: https://doi.org/10.1016/j.bone.2014.07.039
An H, Kim JY, Lee N, Cho Y, Oh E and Seo JH. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway. Biochem Biophys Res Comm 2015; 466(4): 696-703. DOI: https://doi.org/10.1016/j.bbrc.2015.09.108
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ and Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res. 2016; 62(1). DOI: https://doi.org/10.1111/jpi.12370
Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, Kim JW, Gatza M, Murphy and Nevins JR. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009; 28(31): 2796-2805. DOI: https://doi.org/10.1038/onc.2009.139
Paolillo and Schinelli. Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci. 2019; 20(19). DOI: https://doi.org/10.3390/ijms20194947
Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B and Iacobuzio-Donahue CA. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010; 467(7319): 1114-1117. DOI: https://doi.org/10.1038/nature09515
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, Daniel D. MacDonald, David K. Jin, Koji Shido and Scott A. Kerns, Zhenping Zhu, Daniel Hicklin, Yan Wu, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S and Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 438(7069): 820-827. DOI: https://doi.org/10.1038/nature04186
Oskarsson T, Batlle E and Massagué J. Metastatic Stem Cells: Sources, Niches, and Vital Pathways. Cell Stem Cell. 2014; 14(3): 306-321. DOI: https://doi.org/10.1016/j.stem.2014.02.002
Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T, Wallwiener M, Holland-Letz T, Höfner T, Sprick M, Scharpff M, Marmé F, Sinn HP and Pantel K, Weichert W and Trumpp A. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nature Biotechnol. 2013; 31(6): 539-544. DOI: https://doi.org/10.1038/nbt.2576
Dieter Sebastian M, Ball Claudia R, Hoffmann Christopher M, Nowrouzi A, Herbst F, Zavidij O, Abel U, Arens A, Weichert W, Brand K, Koch M, Weitz J, Schmidt M, Kalle C and Glimm H. Distinct Types of Tumor-Initiating Cells Form Human Colon Cancer Tumors and Metastases. Cell Stem Cell. 2011; 9(4): 357-365. DOI: https://doi.org/10.1016/j.stem.2011.08.010
Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AMK, Ng K, Ma J, Wienholds E, Dunant C, Pollett A, Gallinger S, McPherson J, Mullighan CG, Shibata D and Dick JE. Variable Clonal Repopulation Dynamics Influence Chemotherapy Response in Colorectal Cancer. Sci. 2013; 339(6119): 543-548. DOI: https://doi.org/10.1126/science.1227670
Meacham CE and Morrison SJ. Tumour heterogeneity and cancer
cell plasticity. Nature. 2013; 501(7467): 328-337. DOI: https://doi.org/10.1038/nature12624
LaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010; 16(12): 3121-3129. DOI: https://doi.org/10.1158/1078-0432.CCR-09-2933
Zhao Y, Bao Q, Renner A, Camaj P, Eichhorn M, Ischenko I, Angele M, Kleespies, Hauch WK and Bruns C. Cancer stem cells and angiogenesis. Int J Develop Bio 2011; 55(4-5): 477-482. DOI: https://doi.org/10.1387/ijdb.103225yz
Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG and Wicha MS. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proceed Nat Academy Sci. 2012; 109(8): 2784-2789. DOI: https://doi.org/10.1073/pnas.1018866109
Chau CH and Figg WD. Angiogenesis inhibitors increase tumor stem cells. Cancer Bio Ther. 2012; 13(8): 586-587. DOI: https://doi.org/10.4161/cbt.19852
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD and Rich JN. Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Res. 2006; 66(16): 7843-7848. DOI: https://doi.org/10.1158/0008-5472.CAN-06-1010
Zhao Y, Bao Q, Renner A, Camaj P, Eichhorn M, Ischenko I, Angele M, Kleespies A, Jauch KW and Bruns C. Cancer stem cells and angiogenesis. Int J Develop Bio. 2011; 55(4-5): 477-482. DOI: https://doi.org/10.1387/ijdb.103225yz
Markowska A, Sajdak S, Markowska J and Huczyński A. Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. Euro J Med Chem. 2017; 142: 87-94. DOI: https://doi.org/10.1016/j.ejmech.2017.06.030
Jiang Y, Guo Y, Hao J, Guenter R, Lathia J, Beck AW, Hattaway R, Hurst D, Wang QJ, Liu Y, Cao Q, Krontiras H, Chen H, Silverstein R and Ren B. Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling. Comm Bio. 2021; 4(1):7 80. DOI: https://doi.org/10.1038/s42003-021-02308-6
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S and Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 438(7069): 820-827. DOI: https://doi.org/10.1038/nature04186
Bendas G and Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Bio. 2012; 2012. DOI: https://doi.org/10.1155/2012/676731
Cabarcas SM, Mathews LA and Farrar WL. The cancer stem cell niche—there goes the neighborhood? Int J Cancer. 2011; 129(10): 2315-2327. DOI: https://doi.org/10.1002/ijc.26312
Najafi M, Farhood B and Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019; 234(6): 8381-8395. DOI: https://doi.org/10.1002/jcp.27740
Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao J, Sun Q, Wang Z, Wartmann T, Jauch KW, Nelson PJ, Qin L and Bruns C. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets
and strategies. Semin Cancer Biol. Elsevier. 2018; DOI: https://doi.org/10.1016/j.semcancer.2018.08.002
Haider M-T, Smit DJ and Taipaleenmäki H. The endosteal niche in breast cancer bone metastasis. Front Oncol. 2020; 10: 335. DOI: https://doi.org/10.3389/fonc.2020.00335
Zhang S, Yang X, Wang L and Zhang C. Interplay between inflammatory tumor microenvironment and cancer stem cells. Oncol Lett. 2018; 16(1): 679-686. DOI: https://doi.org/10.3892/ol.2018.8716
Bie Q, Song H, Chen X, Yang X, Shi S, Zhang L, Zhao R, Wei L, Zhang B, Xoing H and Zhang B. IL-17B/IL-17RB signaling cascade contributes to self-renewal and tumorigenesis of cancer stem cells by regulating Beclin-1 ubiquitination. Oncogene. 2021; 40(12): 2200-2216. DOI: https://doi.org/10.1038/s41388-021-01699-4
Oak PS, Kopp F, Thakur C, Ellwart JW, Rapp UR, Ullrich A, Wagner E, Knyazev P and Roido A. Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2‐positive cancer cells and cancer stem cells. Int J Cancer. 2012; 131(12): 2808-2819. DOI: https://doi.org/10.1002/ijc.27595
Alameddine RS, Otrock ZK, Awada A and Shamseddine A. Crosstalk between HER2 signaling and angiogenesis in breast cancer: molecular basis, clinical applications and challenges. Curr Op Oncol. 2013; 25(3): 313-324. DOI: https://doi.org/10.1097/CCO.0b013e32835ff362
Li T, Liu X, Shen Q, Yang W, Huo Z, Liu Q, Jiao H and Chen J. Salinomycin exerts anti-angiogenic and anti-tumorigenic activities by inhibiting vascular endothelial growth factor receptor 2-mediated angiogenesis. Oncotarget. 2016; 7(18): 26580. DOI: https://doi.org/10.18632/oncotarget.8555
Li T, Liu X, Shen Q, Yang W, Huo Z, Liu Q, Jiao H and Chen J. Salinomycin exerts anti-angiogenic and anti-tumorigenic activities by inhibiting vascular endothelial growth factor receptor 2-mediated angiogenesis. Oncotarget. 2016; 7(18): 26580-26592. DOI: https://doi.org/10.18632/oncotarget.8555
Cheng XJ, Lin JC, Ding YF, Zhu L, Ye J and Tu SP. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues. Oncotarget. 2016; 7(6): 7096. DOI: https://doi.org/10.18632/oncotarget.6898