The Role of Mesenchymal Stem Cell Therapy in Echinococcus granulosus Treatment: A Prospective Review
Main Article Content
Abstract
Hydatid cyst disease is a serious parasitic infection caused by the larvae of the tapeworm Echinococcus granulosus. The disease affects millions of people worldwide, especially in regions, where dogs are used for livestock herding. Treating hydatid cysts is difficult and often involves invasive surgical procedures that risk complications. Mesenchymal stem cell (MSC) therapy has emerged as a promising new approach for treating hydatid cyst disease. This study aimed to explore the properties and therapeutic potential of MSCs, their role in the treatment of hydatid cyst disease, and the advantages of using MSC therapy in comparison with traditional treatment methods. The MSCs are adult stem cells found in various tissues, including bone marrow, adipose tissue, and umbilical cord tissue. The MSCs can differentiate into various cell types and modulate the immune response. This makes them a potentially valuable tool for treating infectious diseases, including hydatid cyst disease. Several studies have shown that MSC therapy can improve the outcomes of hydatid cyst disease. The MSCs were able to significantly reduce the cysts' size and decrease the levels of pro-inflammatory cytokines. The MSC therapy has several advantages rather to traditional treatment methods for hydatid cyst disease. The MSC therapy is minimally invasive and carries a lower risk of complications than surgical procedures. MSC therapy can also be combined with other treatments, such as albendazole, to improve the efficacy of the treatment. In conclusion, MSC therapy could revolutionize the treatment of hydatid cyst disease. More research is needed to fully understand MSC therapy's mechanisms and optimize the treatment protocols. However, the promising results of initial studies suggest that MSC therapy may become an important tool in the fight against hydatid cyst disease.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Sadr S, Charbgoo A, and Borji H. Interactions between innate immunity system and Echinococcus granulosus: permission for vaccine development. Series Med Sci. 2022; 3 (1): 1-18. Available at: https://profdoc.um.ac.ir/articles/a/1092954.pdf
Gessese AT. Review on epidemiology and public health significance
of hydatidosis. Vet Med Int. 2020; 2020: 8859116. DOI: https://doi.org/10.1155/2020/8859116
Asouli A, Sadr S, Mohebalian H, and Borji H. Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562. Acta Parasitol. 2023: 1-8. DOI: https://doi.org/10.1007/s11686-023-00680-3
Sadr S, Ahmadi Simab P, Kasaei M, Landi MG, Borji H, and Adhami G. Potential of Anthelmintic Herbal Drugs against Gastrointestinal Nematodes in Farm Animals: A Review. 2022. FAHN. 2022; 1(1): 26-30. Available at: https://fahn.rovedar.com/article_160944_3e6c 82b5703b82558f72d30827da6569.pdf
Lotfalizadeh N, Sadr S, Moghaddam S, Najjar MS, Khakshoor A, Ahmadi Simab P, et al. The Innate Immunity Defense against Gastrointestinal Nematodes: Vaccine Development. 2022. FAHN. 2022; 1(2): 31-38. Available at: https://fahn.rovedar.com/ article_164201_04a5451bd9cbb5bc803e8d08b64032e3.pdf
Pal M, Zenebe N, Woldemariam T, and Berhanu G. Prevalence of cystic echinococcosis in various food animals slaughtered at selected abattoirs in Ethiopia. Vet Med Int. 2020; 8: 18-23. DOI: https://doi.org/10.5455/ijlr.2021082 6051703
Tamarozzi F, Deplazes P, and Casulli A. Reinventing the wheel of Echinococcus granulosus sensu lato transmission to humans. Trends Parasitol. 2020; 36(5): 427-434. DOI: https://doi.org/10.1016/j.pt.2020.02.004
Lupia T, Corcione S, Guerrera F, Costardi L, Ruffini E, Pinna SM, et al. Pulmonary echinococcosis or lung hydatidosis: a narrative review. Surg Infect. 2021; 22(5): 485-495. DOI: https://doi.org/10.1089/sur.2020.197
Larrieu E, Gavidia CM, and Lightowlers MW. Control of cystic echinococcosis: Background and prospects. ZPH. 2019; 66(8): 889-899. DOI: https://doi.org/10.1111/zph.12649
Abo-Aziza FA, Zaki AKA, and El-Maaty AMA. Bone marrow-derived mesenchymal stem cell (BM-MSC): a tool of cell therapy in hydatid experimentally infected rats. Cell Regen. 2019; 8(2): 58-71. DOI: https://doi.org/10.1016/j.cr.2019.11.001
Kian M, Mirzavand S, Sharifzadeh S, Kalantari T, Ashrafmansouri M, and Nasri F. Efficacy of Mesenchymal Stem Cells Therapy in Parasitic Infections: Are Anti-parasitic Drugs Combined with MSCs More Effective? Acta Parasitol. 2022: 1-13. DOI: https://doi.org/10.1007/s11686-022-00620-7
Shokravi S, Borisov V, Zaman BA, Niazvand F, Hazrati R, Khah MM, et al. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review. Stem Cell Res Ther. 2022; 13(1): 1-21. DOI: https://doi.org/10.1186/s13287-022-02825-z
Elsawey A, Etewa S, and Aboulfotouh N. Stem cells therapy approach in treatment and protection against parasitic diseases. PUJ. 2022; 15(3): 232-237. DOI: https://doi.org/10.21608/puj.2022.156355.1185
Khuroo MS. Hydatid disease: current status and recent advances. Ann Saudi Med. 2002; 22(1-2): 56-64. DOI: https://doi.org/10.5144/0256-4947.2002.56
Sarkar M, Pathania R, Jhobta A, Thakur BR, and Chopra R. Cystic pulmonary hydatidosis. Lung India: official organ of Indian Chest Society. 2016; 33(2): 179. DOI: https://doi.org/10.4103/0970-2113.177449
Agudelo Higuita NI, Brunetti E, and McCloskey C. Cystic echinococcosis. J Clin Microbiol. 2016; 54(3): 518-523. DOI: https://doi.org/10.1128/JCM.02420-15
Díaz Á. Immunology of cystic echinococcosis (hydatid disease). Br Med Bull. 2017: 1-13. DOI: https://doi.org/10.1093/bmb/ldx033
Woolsey ID, and Miller AL. Echinococcus granulosus sensu lato and Echinococcus multilocularis: A review. Res Vet Sci. 2021; 135: 517-522. DOI: https://doi.org/10.1016/j.rvsc.2020.11.010
Aydin Y, Ulas AB, Ahmed AG, and Eroglu A. Pulmonary hydatid cyst in children and adults: diagnosis and management. Eurasian J Med. 2022; 54(1): 133-144. DOI: https://doi.org/10.5152/eurasianjmed.2022.22289
Arikanoglu Z, Taskesen F, Gumus H, Onder A, Aliosmanoglu I, Gul M, et al. Selecting a surgical modality to treat a splenic hydatid cyst: total splenectomy or spleen-saving surgery? J Gastrointest Surg. 2012; 16: 1189-1193. DOI: https://doi.org/10.1007/s11605-012-1837-2
Ran B, Shao Y, Yimiti Y, Aji T, Shayiding P, Jiang T, et al. Spleen-preserving surgery is effective for the treatment of spleen cystic echinococcosis. Int J Infect Dis. 2014; 29: 181-183. DOI: https://doi.org/10.1016/j.ijid.2014.09.009
Hong ST. Albendazole and praziquantel: review and safety monitoring in Korea. J Infect Chemother. 2018; 50(1): 1-10. DOI: https://doi.org/10.3947/ic.2018.50.1.1
Elfawal MA, Savinov SN, and Aroian RV. Drug screening for discovery of broad-spectrum agents for soil-transmitted nematodes. Sci Rep. 2019; 9(1): 1-12. DOI: https://doi.org/10.1038/s41598-019-48720-1
Nunnari G, Pinzone MR, Gruttadauria S, Celesia BM, Madeddu G, Malaguarnera G, et al. Hepatic echinococcosis: clinical and therapeutic aspects. World J Gastroenterol. 2012; 18(13): 1448. DOI: https://doi.org/10.3748/wjg.v18.i13.1448
McManus DP, Gray DJ, Zhang W, and Yang Y. Diagnosis, treatment, and management of echinococcosis. Br Med J. 2012; 344. DOI: https://doi.org/10.1136/bmj.e3866
Velasco-Tirado V, Alonso-Sardón M, Lopez-Bernus A, Romero-Alegría Á, Burguillo FJ, Muro A, et al. Medical treatment of cystic echinococcosis: systematic review and meta-analysis. BMC Infect Dis. 2018; 18: 1-19. DOI: https://doi.org/10.1186/s12879-018-3201-y
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, and Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019; 76: 3323-3348. DOI: https://doi.org/10.1007/s00018-019-03125-1
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, and Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020; 11(1): 1-21. DOI: https://doi.org/10.1186/s13287-020-02001-1
Lelek J, and Zuba-Surma EK. Perspectives for future use of extracellular vesicles from umbilical cord-and adipose tissue-derived mesenchymal stem/stromal cells in regenerative therapies-synthetic review. Int J Mol Sci. 2020; 21(3): 799. DOI: https://doi.org/10.3390/ijms21030799
Manzoor T, Saleem A, Farooq N, Dar LA, Nazir J, Saleem S, et al. Extracellular vesicles derived from mesenchymal stem cells-a novel therapeutic tool in infectious diseases. Inflamm and Regen. 2023; 43(1): 1-17. DOI: https://doi.org/10.1186/s41232-023-00266-6
Müller L, Tunger A, Wobus M, von Bonin M, Towers R, Bornhäuser M, et al. Immunomodulatory properties of mesenchymal stromal cells: an update. Front Cell Dev Biol. 2021; 9: 637725. DOI: https://doi.org/10.3389/fcell.2021.637725
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. 2021; 12(1): 1-30. DOI: https://doi.org/10.1186/s13287-021-02265-1
Jiang W, and Xu J. Immune modulation by mesenchymal stem cells. Cell proli. 2020; 53(1): e12712. DOI: https://doi.org/10.1111/cpr.12712
Medhat D, Rodríguez CI, and Infante A. Immunomodulatory effects of MSCs in bone healing. Int J Mol Sci. 2019; 20(21): 5467. DOI: https://doi.org/10.3390/ijms20215467
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, et al. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res. 2023; 28(1): 47. DOI: https://doi.org/10.1186/s40001-023-01008-7
Shen Z, Huang W, Liu J, Tian J, Wang S, and Rui K. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 2021; 12: 749192. DOI: https://doi.org/10.3389/fimmu.2021.749192
Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, and Lagneaux L. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 2016; 18(2): 160-171. DOI: https://doi.org/10.1016/j.jcyt.2015.10.011
Weiss ARR, and Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019; 10: 1191. DOI: https://doi.org/10.3389/fimmu.2019.01191
Műzes G, and Sipos F. Mesenchymal stem cell-derived secretome: a potential therapeutic option for autoimmune and immune-mediated inflammatory diseases. Cells. 2022; 11(15): 2300. DOI: https://doi.org/10.3390/cells11152300
Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, et al. The immunomodulatory activity of human umbilical cord blood‐derived mesenchymal stem cells in vitro. Immunology. 2009; 126(2): 220-232. DOI: https://doi.org/10.1111/j.1365-2567.2008.02891.x
Andorko JI, and Jewell CM. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med. 2017; 2(2): 139-155. DOI: https://doi.org/10.1002/btm2.10063
Crop M, Baan C, Weimar W, and Hoogduijn M. Potential of mesenchymal stem cells as immune therapy in solid‐organ transplantation. Transpl Int. 2009; 22(4): 365-376. DOI: https://doi.org/10.1111/j.1432-2277.2008.00786.x
Sun K, Zhou Z, Ju X, Zhou Y, Lan J, Chen D, et al. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering: a systematic review and meta-analysis. Stem Cell Res Ther. 2016; 7(1): 1-13. DOI: https://doi.org/10.1186/s13287-016-0390-4
Fu X, Liu G, Halim A, Ju Y, Luo Q, and Song G. Mesenchymal stem cell migration and tissue repair. Cells. 2019; 8(8): 784. DOI: https://doi.org/10.3390/cells8080784
Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010;20(5): 510-518. DOI: https://doi.org/10.1038/cr.2010.44
Yang N, Ma W, Ke Y, Liu H, Chu J, Sun L, et al. Transplantation of adipose-derived stem cells ameliorates Echinococcus multilocularis-induced liver fibrosis in mice. PLOS Negl Trop Dis 2022; 16(1): e0010175. DOI: https://doi.org/10.1371/journal.pntd.0010175
Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl Med. 2019; 8(11): 1135-1148. DOI: https://doi.org/10.1002/sctm.19-0044
Wright A, Arthaud-Day ML, and Weiss ML. Therapeutic use of mesenchymal stromal cells: the need for inclusive characterization guidelines to accommodate all tissue sources and species. Front Cell Dev Biol. 2021; 9: 632717. DOI: https://doi.org/10.3389/fcell.2021.632717
Levy O, Kuai R, Siren EM, Bhere D, Milton Y, Nissar N, et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020; 6(30): eaba6884. DOI: https://doi.org/10.1126/sciadv.aba6884
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, and Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019; 2019. 9628536. DOI: https://doi.org/10.1155/2019/9628536
Chavda VP, Pandya A, Kumar L, Raval N, Vora LK, Pulakkat S, et al. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today. 2023; 49: 101771. DOI: https://doi.org/10.1016/j.nantod.2023.101771
Mohapatra SS, Frisina RD, Mohapatra S, Sneed KB, Markoutsa E, Wang T, et al. Advances in translational nanotechnology: challenges
and opportunities. Appl Sci. 2020; 10(14): 4881. DOI: https://doi.org/10.3390/app10144881
Yang J, Wang M, Yang J, Chu Z, Chen X, Wu X, et al. Calcifying nanoparticles initiate the calcification process of mesenchymal stem cells in vitro through the activation of the TGF-β1/Smad signaling pathway and promote the decay of echinococcosis. Open Life Sci. 2022;17(1):1335-1346. DOI: https://doi.org/10.1515/biol-2022-0503
Mezey É, and Nemeth K. Mesenchymal stem cells and infectious diseases: smarter than drugs. Immunol Lett. 2015; 168(2): 208-214. DOI: https://doi.org/10.1016/j.imlet.2015.05.020
Pereira JC, Ramos TD, Silva JD, de Mello MF, Pratti JES, da Fonseca-Martins AM, et al. Effects of bone marrow mesenchymal stromal cell therapy in experimental cutaneous leishmaniasis in BALB/c mice induced by Leishmania amazonensis. Front Immunol. 2017; 8: 893. DOI: https://doi.org/10.3389/fimmu.2017.00893
Bahrami S, Safari M, Jalali MHR, Ghorbanpoor M, Tabandeh MR, and Rezaie A. The potential therapeutic effect of adipose-derived mesenchymal stem cells in the treatment of cutaneous leishmaniasis caused by L. major in BALB/c mice. Exp Parasitol. 2021; 222: 108063. DOI: https://doi.org/10.1016/j.exppara.2020.108063