
                                                                                                                                 

  

 

 Review Article                                                                                                                                                                                             

 

 Cite this paper as: Rahdari M, Hashemi HS, Hashemi SMA, Nadjafi-Semnani A, Jamalie S, Sakhaee MH, Zabihi F, Shariat Razavi SA, Taghdisi Khaboushan M, 
Ahmadi G. Advancements in the Utilization of Metal Nanoparticles for Breast Cancer Treatment: An In Vivo Studies Update. Journal of Lab Animal Research. 
2023; 2(5): 63-71. DOI: 10.58803/jlar.v2i5.31 

The Author(s). Published by Rovedar. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.   

Journal of Veterinary Physiology and Pathology. 2020; 1(--): ---.  
 

http://jvpp.rovedar.com/   

       Rovedar  

Journal of Lab Animal Research. 2023; 2(5): 63-71.  
 

DOI: 10.58803/jlar.v2i5.31  

 

http://jlar.rovedar.com/  
 

 

  

Advancements in the Utilization of Metal Nanoparticles for Breast Cancer Treatment: An 
In Vivo Studies Update 

Mahdiyeh Rahdari1 , Homa Sadat Hashemi2 , Seyed Mohamad Ali Hashemi3 , Ali Nadjafi-Semnani4 , Saeid 
Jamalie5 , Mohammad Hossein Sakhaee3 , Fariba Zabihi6 , Seyed Ali Shariat Razavi7 , Masoumeh Taghdisi 
Khaboushan8 , and Ghazale Ahmadi3,*   
 

1 Faculty of Pharmacy Zabol, University of Medical Sciences, Zabol, Iran  
2 Pharm-D student, Mashhad University of Medical Sciences, Mashhad, Iran 
3 Medical Doctor, Mashhad University of Medical Sciences, Mashhad, Iran 
4 Department of General Surgery, Mashhad University of Medical Sciences, Mashhad, Iran 
5 Anesthesiologist, Department of Anesthesia, Mashhad University of Medical Sciences, Mashhad, Iran 
6 Department of General Surgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran 
7 Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 
8 Student Research Committee, Islamic Azad University Mashhad Branch, Mashhad, Iran 
 
* Corresponding author: Ghazale Ahmadi, Mashhad University of Medical Sciences, Mashhad, Iran. Email: Ghazale__6053@yahoo.com 

 
A R T I C L E   I N F O  A B S T R A C T 

Article History: 
Received: 08/09/2023 
Revised: 04/10/2023 
Accepted: 10/10/2023 
Published: 25/10/2023 
 

 

 Breast cancer continues to pose a significant threat to women’s health around the globe, 
requiring continuous research and innovation in treatment. In recent years, metal 
nanoparticles have emerged as a promising means of treating breast cancer with greater 
precision and efficiency. The in vivo studies have indicated that metal nanoparticles, such 
as gold, silver, and platinum, have demonstrated a remarkable ability to selectively target 
breast cancer cells while sparing healthy tissue. These nanoparticles’ size, shape, and 
surface chemistry can be altered to enhance their biocompatibility, stability, and drug-
loading capacity. They are also highly versatile for therapeutic applications due to their 
unique physicochemical properties, such as drug delivery, photothermal therapy, and 
imaging. This review focuses on recent in vivo studies evaluating metal nanoparticles’ 
safety and efficacy in treating breast cancer. Several studies have demonstrated that metal 
nanoparticles can trigger apoptosis, inhibit tumor growth, and reduce metastasis in 
cancer cells. Furthermore, using these nanoparticles with traditional chemotherapy and 
radiotherapy has demonstrated a synergistic effect, enhancing treatment efficacy. This 
review also examines the challenges and concerns associated with the clinical translation 
of metal nanoparticles. Factors like biocompatibility, pharmacokinetics, and long-term 
safety profiles are discussed in the context of regulatory approval and patient-specific 
considerations. In conclusion, this review highlights the evolving landscape of breast 
cancer treatment with the development of metal nanoparticles, as evidenced by recent in 
vivo studies. In addition to their therapeutic versatility, these nanoparticles can potentially 
improve patient outcomes and decrease the burden of breast cancer on society. 
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1. Introduction

Breast cancer’s persistent and relentless nature has 
seriously challenged individuals and healthcare systems 
worldwide1. Millions of women are affected by breast cancer 
each year, making it the second most common cause of 
cancer deaths among women2. Considering breast cancer as 
a complex disease with different subtypes and highly 
individualized responses to treatment interventions, 
innovative and effective treatment approaches must be 

developed to control the disease as effectively as possible3-5. 
Despite its global impact, breast cancer affects people 
across continents and socio-economic levels6. Patients and 
families who suffer from breast cancer face a challenging 
road full of treatments, surgeries, and emotional hardship7. 
The high demand for advanced diagnostics, treatments, 
and supportive care makes breast cancer a substantial 
financial burden for healthcare systems8. 
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Nanotechnology has revolutionized human and animals 
treatment recently, bringing about a transformative and 
promising paradigm shift9,10. Nanoparticles have emerged as 
key protagonists in the modern therapeutic revolution 
because of their minuscule size and extraordinary 
properties11. In addition to these nanoparticles, metal 
nanoparticles have gotten much attention for their 
remarkable attributes, making them ideal for cancer cell 
targeting12. Metal nanoparticles are crucial in cancer therapy 
due to their inherent flexibility13. In addition to delivering 
therapeutic agents accurately and efficiently, these attributes 
allow precision imaging and controlled drug release14. All 
these characteristics make metal nanoparticles indispensable 
for medical research. Another feature of metal nanoparticles 
that have attracted great interest is their ability to 
accumulate within tumor tissues while sparing healthy cells 
selectively15. This selective accumulation stems from the 
enhanced permeability and retention (EPR) effect, a 
phenomenon often observed in tumors due to their leaky 
vasculature and limited lymphatic drainage16. In order to 
minimize unintended damage to healthy tissues, this 
differential accumulation is imperative since it reduces the 
debilitating side effects usually associated with traditional 
chemotherapy and radiotherapy17. Therefore, metal 
nanoparticles have great potential as precision weapons 
against cancer, as they aim at the cause of the disease while 
minimizing collateral damage18. 

This review aims to provide an overview of the 
utilization of metal nanoparticles in treating breast cancer, 
emphasizing insights from in-vivo studies. It seeks to 
provide an in-depth understanding of their applications, 
potential synergies with conventional treatments, and the 
associated challenges. Moreover, this review emphasizes 
the importance of ongoing research, clinical trials, and 
regulatory efforts to maximize the therapeutic potential of 
metal nanoparticles. 

 

2. Physicochemical properties and 
customization 

 
The therapeutic potential of metal nanoparticles in 

breast cancer therapy depends on precisely manipulating 
their physicochemical properties19. Nanoparticles can be 
tailored to meet specific therapeutic objectives based on 
their size, shape, surface charge, and surface chemistry20. 

 
2.1. Size 

 
The size of metal nanoparticles is a key factor 

influencing their biological behavior. For breast cancer 
therapy, nanoparticles between 1-100 nanometers are 
optimal21. Their small size range allows them to navigate 
quickly through the complex terrain of biological barriers. 
Due to their relatively small size, they are easily absorbed 
by tumor tissues and, importantly, can enter cancer cells22. 
It is particularly important to have this attribute when 
seeking to deliver drugs intracellularly since nanoparticles 
must traverse cell membranes to reach their target23. 
Moreover, these nanoparticles capitalize on the enhanced 

permeability and retention (EPR) effect in tumor tissues24. 
A nanoparticle can selectively accumulate in the tumor 
microenvironment due to the EPR effect25. In cancerous 
tissues, lymphatic drainage is limited due to increased 
leakiness of the tumor’s blood vessels26. As a result, 
therapeutic payloads are concentrated within the tumor, 
reducing exposure to healthy cells and, thus, reducing 
undesirable side effects27,28.  

 
2.2. Shape 

 
Metal nanoparticles are versatile due to their shape29. 

These nanoparticles can take different forms, such as 
spheres, rods, or even more complex structures30. In 
biological systems, each shape confers distinct 
characteristics31. Different shapes, for instance, have 
different surface-to-volume ratios, which affect their 
circulation time in the bloodstream32. Additionally, the 
electrostatic properties of these shapes play an important 
role in their uptake by cells and their distribution within 
tumors33. Therefore, researchers can choose the most 
appropriate nanoparticle shape based on the intended 
application and pharmacokinetics of the drug34. 
Customizing the shape allows greater control over how the 
nanoparticles interact with the body35. 

 
2.3. Surface charge 

 
An underappreciated aspect of the design of metal 

nanoparticles is their zeta potential or surface charge36. As 
a result of this electrostatic property, their stability, and 
interactions with biological molecules are influenced37. 
Positively charged nanoparticles can exhibit an affinity for 
negatively charged cell membranes38. As a result of this 
interaction, the therapeutic agent can be absorbed into the 
breast cancer cells, which is a crucial step in the delivery of 
therapeutic agents39. Conversely, nanoparticles with 
neutral or negatively charged surfaces tend to be more 
stable in biological fluids, reducing aggregation and 
prolonging circulation40,41. Using surface charge to 
customize nanoparticles ensures that they behave 
optimally in biological environments42,43. 

 
2.4. Surface chemistry 

 
The term surface chemistry refers to the functional 

groups and molecules attached to the surface of metal 
nanoparticles44. This aspect provides a wide range of 
customization options. Surface chemistry can be modified 
to introduce specific moieties that allow the attachment of 
targeting ligands, drugs, or imaging agents45,46. As a result 
of this customization, nanoparticles are able to selectively 
bind to breast cancer cells or to specific receptors within 
cells, enhancing their specificity47. By enhancing specificity, 
the risk of unintended interactions with healthy cells is 
minimized, which is especially important when developing 
precision therapies for breast cancer48. Therefore, 
customized surface chemistry enables nanoparticles to 
deliver therapeutic payloads to their intended targets via 
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the bridge between nanoparticles and their targets49. 
 

3. Metal nanoparticles in breast cancer 
therapy 

 
Metal nanoparticles have emerged as promising 

frontrunners in cancer therapy as the relentless search for 
more innovative approaches continues50. They are versatile 
and potent precision medicine platforms due to their small 
size and exceptional physicochemical properties51. Gold, 
silver, and platinum nanoparticles are centered in the 
spotlight, each of which has its own unique characteristics 
and applications in the fight against breast cancer52,53. 

 
3.1. Gold nanoparticles 

 
Gold nanoparticles have drawn the attention of both 

researchers and clinicians due to their exceptional 
characteristics54,55. Their small size allows them to penetrate 
biological barriers, infiltrating cancer cell bodies56,57. The use 
of gold nanoparticles can be skillfully engineered to deliver 
therapeutic agents directly to breast cancer cells, such as 
chemotherapeutic drugs or small interfering RNA (siRNA)58. 
In addition, their surfaces can be precisely modified to 
enhance biocompatibility and stability, which is crucial for 
safely and effectively transporting therapeutic 
substances59,60. It is fascinating to explore the role gold 
nanoparticles play in photothermal therapy. The ability to 
convert light energy into heat is demonstrated when they are 
exposed to near-infrared light61. As a result of this 
phenomenon, cancer cells can be selectively destroyed while 
healthy tissues are left unaffected62. These dual functions as a 
drug delivery vehicle and a photothermal therapy agent 
make gold nanoparticles attractive as potential treatment 

options for localized tumors63,64. 
 

3.2. Silver nanoparticles 
 
Nanoparticles of silver have also been successful in 

treating breast cancer65. In the context of breast cancer 
therapy, silver nanoparticles are particularly notable for 
their inherent antibacterial properties66. Silver 
nanoparticles, with their natural antibacterial prowess, 
offer a potential solution to infections at the surgical site 
after breast cancer surgery67. These versatile particles can 
have their properties tailored to suit specific therapeutic 
purposes in vivo68. Targeting ligands can be applied to their 
surfaces, increasing their specificity for cancer cells and 
offering hope for precise cancer treatment69. In addition to 
their potential as drug delivery systems, they can act 
synergistically with existing treatments, amplifying their 
effectiveness in fighting breast cancer70. 

 
3.3. Platinum nanoparticles 

 
Among the most powerful advocates for battling breast 

cancer are platinum nanoparticles, which are compatible 
with cisplatin, a widely used chemotherapy drug71. 
Cisplatin can be controlled by these nanoparticles by 
exploiting their surface properties and petite size. Targeted 
delivery minimizes collateral damage associated with off-
target toxicity while also enhancing cancer-eradication 
efficacy72,73. Additionally, platinum nanoparticles serve as 
valuable contrast agents in medical imaging. Providing 
insights into breast cancer can significantly impact patient 
care by enabling early detection and therapy74,75. Platinum 
nanoparticles provide new dimensions in breast cancer 
management, improving targeted therapies (Figure 1)75-77. 

 

 
Figure 1. Metal Nanoparticles in Breast Cancer Therapy. This figure highlights the pivotal roles of three types of metal nanoparticles (gold, silver, and 
platinum) in breast cancer therapy.  
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4. In vivo studies update 
 
Recently, researchers conducted an in-vivo study to 

investigate the potential of silver nitroprusside 
nanoparticles (AgNNPs) as cancer therapeutics78. The 
AgNNPs were modified slightly to enhance their 
effectiveness as wedded to cancer cells. The 
nanoparticles were found to be biocompatible in normal 
cell lines and cytotoxic in various cancer cell lines. 
Further, they showed antiangiogenic properties and 
significantly inhibited the growth of breast tumors in 
mouse models, increasing the survival of tumor-bearing 
mice. The study suggests that AgNNPs could be a 
promising nanomedicine for breast and other cancers, 
pending further biosafety evaluation. 

Researchers have developed a method to encapsulate 
curcumin in monodispersed isoreticular nanoscale metal-
organic framework (NMOF-3) nanoparticles for selective 
drug delivery in triple-negative breast cancer (TNBC)79. 
These nanoparticles, specifically folic acid-conjugated 
curcumin-loaded IRMOF-3 (IRMOF-3@CCM@FA), 
demonstrated cytotoxicity against TNBC cells. Apoptosis 
was promoted by IRMOF-3@CCM@FA by upregulating Bax, 
downregulating Bcl-2, and upregulating JNK and p53 in 
human TNBC cells. Based on in-vivo studies of mice with 
TNBC, targeted delivery of curcumin using IRMOF-
3@CCM@FA increased survival and reduced tumor volume 
compared to non-targeted delivery, suggesting its potential 
as a therapeutic agent. 

A rapid, cost-effective, and environmentally friendly 
method has been developed for producing titanium dioxide 
(TiO2) nanoparticles by combining an aqueous leaf extract 
of Zanthoxylum armatum with an aqueous leaf extract of 
Magnesium oxide in order to reduce the particles80. The 
safety and anti-tumor efficacy of these TiO2 nanoparticles 
were investigated, compared to doxorubicin (DOX), a 
commonly used breast cancer treatment known for its 
cardiotoxicity. TiO2 nanoparticles have been found to be 
small, spherical, and crystalline, and they have shown 
strong cytotoxic properties both in vitro and in vivo, with a 
notable reduction in tumor volume. This effect was 
partially mediated by generating reactive oxygen species 
(ROS). In contrast to DOX, the TiO2 nanoparticles did not 
induce cardiotoxicity or alter body weight in the mice 
tested. These findings suggest that Zanthoxylum armatum-
derived TiO2 nanoparticles are a cost-effective, efficient, 
and safer alternative to DOX for breast cancer therapy, 
prompting the potential for clinical trials. 

As part of a recent study, researchers developed a 
multifunctional nanoprobe composed of Raman reporter 
(DTTC)-coupled Agcore@Aushell nanostars (Ag@Au-
DTTC), which has an enhanced capability for surface-
enhanced Raman scattering (SERS) imaging and NIR-
triggered photothermal therapy (PTT) for breast cancer81. 
In this two-step coupling of DTTC, the Au nanostars are 
coated onto Ag nanoparticles, which resulted in a 
significant improvement in the SERS signal and a decrease 
in nanoparticle cytotoxicity. The Ag@Au-DTTC nanostars 
displayed high photostability and efficient photothermal 

performance with a conversion efficiency of 79.01% under 
808 nm laser irradiation. Both in-vitro and in-vivo 
measurements of SERS revealed clear Raman peaks, 
making them helpful in imaging MCF-7 cells and tumor-
bearing mice. Tumors in mice treated with Ag@Au-DTTC 
nanostars and irradiated with 808 nm lasers almost 
disappeared after 14 days. In this study, Ag@Au-DTTC 
nanostars are demonstrated to be effective multifunctional 
agents for enhancing SERS imaging and safe NIR-triggered 
PTT of breast cancer. 

In an athymic nude mouse model, a novel technique 
was developed to functionalize gold nanorods (GNRs) as in 
vivo targets for breast cancer tumors82. This involved 
covalently attaching Herceptin (HER), a monoclonal 
antibody for recognizing specific tumor-associated 
antigens, and poly(ethylene glycol) (PEG) to GNRs, which 
helped evade the body’s reticuloendothelial system. In 
vitro tests confirmed the stability and functionality of these 
particles (Her-PEG GNRs) in blood, and subsequent in-vivo 
experiments in breast cancer-bearing nude mice 
demonstrated successful accumulation of functionalized 
gold nanorods within HER2/neu overexpressing breast 
tumors. These findings support the potential use of GNRs 
for molecular tumor imaging. 

A recent in-vivo study investigated Zeolitic imidazole 
frameworks (ZIF-90) as potential cancer treatments83. 
Nano ZIF-90 was synthesized with superior 
biocompatibility, mitochondrial targeting, and in vivo 
survival compared to nano ZIF-8. A Y1 receptor ligand was 
conjugated to doxorubicin-encapsulated nano ZIF-90 (AP-
ZIF-90) to enhance its cancer treatment capabilities. The 
approach led to an 80% survival rate in MDA-MB-231 
tumor-bearing mice after 40 days, with minimal liver and 
renal side effects. The combination of nano ZIF-90 and Y1 
receptor ligands shows promise for treating triple-negative 
breast cancer in vivo. 

Recent in vivo research modified copper oxide 
nanoparticles with folic acid to enable targeted delivery84. 
Physicochemical properties of both copper oxide 
nanoparticles (CuO NPs) and folic acid-conjugated copper 
oxide nanoparticles (CuO–FA NPs) were characterized. The 
study demonstrated the targeting efficacy of CuO–FA NPs 
using folate receptor-positive and folate receptor 
knockdown in human breast cancer cells (MCF7). Flow 
cytometry, ROS generation, and apoptotic protein 
expression indicated that CuO–FA NPs induced apoptosis 
in MCF7 cells. In an in vivo experiment using Dalton’s 
lymphoma-induced tumors in mice, CuO–FA NPs effectively 
destroyed tumor cells and decreased tumor size 
significantly after 15 days, suggesting their anti-cancer 
properties. 

A recent study has demonstrated the selective efficacy 
of silver nanoparticles (AgNPs) in treating triple-negative 
breast cancer (TNBC) cells without harming non-
malignant breast epithelial cells, both in vitro and in 
vivo85. According to the research, AgNPs, regardless of 
size, shape, or stabilizing agent, exhibit high cytotoxicity 
against TNBC cells while sparing non-malignant breast 
cells. Due to the specific nanoparticle formulation, there 
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is selective cytotoxicity. Although AgNPs are internalized 
by both TNBC and non-malignant breast cells, they are 
rapidly degraded only within TNBC cells, depleting 
antioxidants and stressing the endoplasmic reticulum. 
Moreover, AgNPs cause DNA damage to TNBC tumor 
nodules without disrupting normal breast cells. When 
administered systemically to mice, AgNPs effectively 
reduced the growth of TNBC tumor xenografts, 
suggesting that AgNPs may be used in TNBC treatment 
that is safe and specific. 

In a recent in-vivo study, gold nanoparticles (AuNPs) 
were synthesized using an aqueous extract from the 
endophytic Cladosporium sp. isolated from Commiphora 
wightii, resulting in MycoAuNPs86. These nanoparticles are 
spherical and have an average 5-10 nanometers size. 
MycoAuNPs exhibited anti-cancer activity against the MCF-
7 breast cancer cell line, inducing apoptosis, and were 
effective against tumor growth in mouse models, 
increasing lifespan and reducing ascites volume and body 
weight. MycoAuNPs showed no adverse effects on normal 
mice and displayed photocatalytic activity in the presence 
of sunlight for dye degradation. This study highlights the 
multifaceted therapeutic and catalytic applications of 
biosynthesised MycoAuNPs. 

Various biosynthesized inorganic nanoparticles of 
different sizes and shapes, including silver and selenium 
nanomaterials, were tested for safety, toxicity, and efficacy 
in an in vivo study87. These bioinspired nanomaterials, all 
under 35 nm and exhibiting hexagonal and spherical 
shapes, were characterized using spectroscopic and 
microscopic techniques. Hemolysis and endotoxin tests 
showed low hemolytic effects, and no endotoxins were 
detected. A hematological, biochemical, histological, and 
DNA damage study conducted in Swiss mice revealed 
minimal adverse effects. Moreover, these nanoparticles 
demonstrated significant anti-tumor potential in a DMBA-
induced breast cancer model in female rats, reducing 
tumor volume. Based on their low toxicity and high 
therapeutic effectiveness, these biologically synthesized 
nanocomposites may help manage life-threatening 
conditions. 

An in vivo study recently used a novel approach that 
uses modified metal-organic frameworks (MIL-101(Fe)) 
containing selenium/ruthenium nanoparticles to deliver 
pooled small interfering RNAs (siRNAs)88. This strategy 
aimed to enhance therapy efficacy by silencing multidrug 
resistance (MDR) genes and interfering with microtubule 
(MT) dynamics in Taxol-resistant MCF-7/T cells. Due to the 
presence of coordinatively unsaturated metal sites, 
selenium/ruthenium nanoparticles strongly interacted 
with MIL-101(Fe). These nanoparticles, loaded with MDR 
gene-silencing siRNAs, increased siRNA protection, cellular 
uptake, and escape from endosomes/lysosomes, leading to 
MDR gene silencing and enhanced cytotoxicity via 
apoptosis induction and disruption of MT dynamics. The 
nanoparticles were proven to reduce the toxicity of cancer 
therapy while improving efficacy in vivo in mice with MCF-
7/T xenografts. 

Porphyrin-based metal-organic framework (MOF) 

materials were investigated for their potential in treating 
breast cancer in an in-vivo study. By loading doxorubicin 
hydrochloride (DOX) into these MOFs, they examined the 
synergistic effect of DOX carriers and photodynamic 
therapy on breast cancer. The study found that MOFs 
prolonged DOX residence in tumor tissues, facilitated 
DOX endocytosis by tumor cells, and, when combined 
with photodynamic therapy, resensitized breast cancer 
tumors to DOX, enhancing its chemotherapy effect. It 
provides valuable insights into countering chemotherapy 
resistance and improving breast cancer treatment 
outcomes (Figure 2). 

 

5. Challenges and future 
 
Numerous complex challenges and critical concerns 

exist on the path toward the clinical adoption of metal 
nanoparticles in breast cancer therapy as their promising 
potential continues to unfold89. These challenges deserve 
meticulous consideration, including biocompatibility, 
toxicity, pharmacokinetics, and biodistribution90. 
Biocompatibility is one of the foremost concerns when 
using metal nanoparticles for breast cancer therapy91-94. 
Although these nanoparticles show great promise, they 
may provoke immune responses and adverse reactions 
within the complex body milieu95. There is concern 
regarding the immune system’s response to these foreign 
entities, including potential inflammation and activation of 
immune cells96. Moreover, these nanoparticles may be 
highly toxic due to their metallic composition97,98. Since 
metal ions can be released into the systemic circulation and 
accumulate in vital organs, stringent safety tests are 
required99. Careful design and surface modification are 
vital to ensure the safety of metal nanoparticles used in 
breast cancer treatment100. The complex pharmacokinetics 
and biodistribution of metal nanoparticles pose another 
complex challenge. The mechanics of how these 
nanoparticles move through the bloodstream, accumulate 
in tumor tissues, and eventually leave the body is a 
complex puzzle101. Factors such as nanoparticle size, shape, 
surface charge, and surface chemistry all influence these 
dynamics102. Due to the intricate relationship between 
these factors, as well as nanoparticles’ potential to undergo 
transformations or degradation in the body, rigorous 
pharmacokinetic studies are essential103. Additionally, 
nanoparticles are potentially retained in vital organs for 
long periods of time and may accumulate off-target in 
healthy tissues104. A delicate balance must be struck 
between tumor targeting and minimal off-target effects. 
In the field of in vivo studies, the future holds a tapestry 
of promising threads, each weaving a story of potential 
breakthroughs and technological advancements in breast 
cancer research105. The combination of metal 
nanoparticles and molecular imaging promises to 
redefine early breast cancer detection and monitoring106. 
Future breast cancer treatment will transcend 
standardized approaches, delivering tailored and precise 
interventions that reduce side effects while maximizing 
therapeutic efficacy107. 
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Figure 2. The multifaceted landscape of utilizing metal nanoparticles in breast cancer therapy. Beneficial aspects include their potential for precise drug 
delivery, enhanced imaging capabilities, and innovative treatment options, such as controlled drug release. However, challenges exist in terms of 
biocompatibility and immune responses, complex pharmacokinetics and biodistribution, regulatory approval hurdles, and the integration of metal 
nanoparticles into clinical practice. Careful consideration of these aspects is essential to harness the full potential of metal nanoparticles in the fight 
against breast cancer. 

 
6. Conclusion 

 
In summary, in vivo studies have demonstrated 

significant progress and promising prospects in harnessing 
the full potential of metal nanoparticles in breast cancer 
therapy. Adaptable nanoscale entities have illuminated a 
path toward more precise, effective, and patient-centric 
treatment options. Clinical trials and ongoing research 
initiatives are at the forefront of this endeavor, which 
offers the potential for translating laboratory findings into 
tangible benefits for actual patients. Individualized 
strategies for breast cancer treatment, meticulously 
tailored to the specific profiles of individual patients, point 
to a future in which therapeutic approaches will exhibit 
unparalleled precision, thereby minimizing adverse effects 
and increasing therapeutic effectiveness. Furthermore, it is 
vital to emphasize that metal nanoparticles have the 
potential to influence patient outcomes in a significant way. 
The use of these innovative therapies not only holds the 
key to managing disease but has also been shown to 
improve the quality of life of breast cancer patients. 
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