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 Introduction: Salmonella typhimurium (S. typhimurium) has emerged as a promising 
agent for cancer therapy. This systematic review aimed to comprehensively analyze 
the existing literature regarding the utilization of S. typhimurium as a therapeutic 
strategy against cancer. The present systematic review aimed to evaluate the current 
state of knowledge regarding the anti-tumor properties of S. typhimurium, 
encompassing its tumor-targeting mechanisms, impact on tumor growth, modulation 
of the tumor microenvironment, and potential for combination therapies. 
Materials and methods: A systematic literature search was conducted across major 
scientific databases, including PubMed, Web of Science, and Scopus, using predefined 
search terms. Studies published between 2000 and 2023 were included if they 
investigated the anti-tumor effects of S. typhimurium in vivo. Studies were 
independently screened, selected, and evaluated for quality by two experts in the field. 
Results: The systematic review identified 152 relevant studies that met the inclusion 
criteria. These studies collectively demonstrated the ability of S. typhimurium to 
selectively target and colonize tumors, resulting in significant tumor growth inhibition 
in various cancer types. Mechanistic insights revealed that S. typhimurium can induce 
direct cytotoxicity, modulate the tumor microenvironment, and activate anti-tumor 
immune responses. Additionally, studies highlighted the potential of combining S. 
typhimurium with conventional therapies or immune checkpoint inhibitors to enhance 
therapeutic efficacy. 
Conclusion: This systematic review underscores the promising potential of S. 
typhimurium as a novel and multifaceted approach to cancer therapy. The accumulated 
evidence suggests that S. Typhimurium possesses inherent tumor-targeting capabilities, 
exerts direct anti-tumor effects, and can synergize with other treatment modalities. 
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1. Introduction

One of the most challenging health problems to treat is 
cancer, which is a leading cause of death worldwide1. On 

average, 10 million people die from cancer each year. 
Detecting and treating cancer at an early stage is crucial. It 
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is important to note that most conventional treatments can 
damage healthy tissues, even though they are lifesaving2. For 
example, chemotherapeutics, surgeons, and radiologists 
effectively save lives3. Surgical removal can be used to treat 
certain cancer types and stages. In addition, metastases and 
relapse are possible with this method4. The success of 
chemotherapy and radiotherapy in treating cancer varies 
accordingly, especially distant recurrences of tumors and 
adverse effects. The development of new cancer treatment 
ideas and strategies is crucial for improving the effectiveness 
in patients5-7. According to several studies, tumor treatment 
failure can be attributed to such regions8,9. Furthermore, 
tumor-specific therapeutic agents cannot be delivered to 
tumors because of abnormal vascular architecture. Various 
organisms, including fungi, and pathogens (parasitic worms 
[hydatid cyst protoscolex, Trichinella spiralis])  or even 
protozoan (Trypanosoma cruzi) offer potential anti-cancer 
properties through bioactive compounds and 
immunomodulation10-14. Escherichia coli, Clostridium, 
Salmonella, and Bifidobacterium, among others, contain 
inherent characteristics that make them tumor-targeting and 
tumor-killing bacteria15. 

It has long been recognized that Salmonella typhimurium 
(S. typhimurium) is a significant cause of foodborne illness in 
humans, which is a gram-negative bacterium from the 
Enterobacteriaceae family16,17. This pathogenic bacterium has 
recently been identified as a potential cancer therapeutic 
agent18. Investigations indicate S. typhimurium enters and 
selectively kills solid tumor tissues19,20. However, healthy cells 
were not harmed; a novel and potent tool for treating cancer 
has been discovered in S. typhimurium based on the intriguing 
discovery21. The ability of some bacteria to home tumors has 
been demonstrated while heterologous genes have been 
delivered intracellularly by other invasive species22,23. It is 
more advantageous to express target genes in S. typhimurium 
since they are highly replicating and invasive24. A tumor 
hypoxic zone promotes the survival of optional anaerobes 
that act as anti-tumor agents25. The therapeutic gene must be 
delivered effectively to the target tissues or cells for gene 
therapy to be successful26. S. typhimurium is one of the 
greatest pathogens for bacteria-mediated cancer treatments 
(BMCT). Animals with highly aerobic conditions can spread it 
systemically, and a hypoxic tumor region is its preferred 
colonization site, where it eventually settles. In addition to 
conventional therapies, S. Typhimurium can colonize hypoxic 
and necrotic and metastatic tumors27,28. 

The objective of this systematic review is to evaluate the 
current state of knowledge regarding the antitumor 
properties of S. typhimurium, encompassing its tumor-
targeting mechanisms, impact on tumor growth, modulation 
of the tumor microenvironment, and potential for 
combination therapies in animal models. Salmonella's 
potential as a key microbial agent in cancer therapy will be 
investigated, as well as engineering methods that can be used 
to create Salmonella-based cancer treatments of the future. 

 

2. Materials and Methods 
 

The article presents a review of studies published 

between the years 2000 and 2022 in order to come up with 
a conclusion. All relevant studies on S. typhimurium's anti-
cancer properties are identified through systematic and 
exhaustive literature searches. A comprehensive search of 
multiple electronic databases, such as PubMed, Scopus, 
Web of Science, and Database, will begin the review 
process. The search is supplemented with manual searches 
of reference lists and relevant journals to minimize the risk 
of missing relevant studies. Searching keywords  
were Salmonella typhimurium, Salmonella-based therapy, 
Salmonella, cancer therapy, cancer, immunotherapy, gene 
therapy, and in vivo. 

 
2.1. Inclusion and exclusion criteria 

 
Upon retrieving the studies, screening was conducted in 

two stages. Reviewing the titles and abstracts of the papers 
was the first step in the screening process. Second, the quality 
of the articles was evaluated based on the full text of their 
studies. The title and abstract screening procedures involved 
studies with predefined inclusion, and the exclusion criteria 
led to the removal of irrelevant or duplicates. The full texts of 
studies were reviewed once they were available.  

 
2.2. Quality assessment and data extraction 

 
This study was developed based on a standardized data 

extraction form to extract relevant information from the 
selected studies. It included publication year, authors, 
sample size, and experimental model, which are the most 
important characteristics of the study. Salmonella 
typhimurium has a wide range of anti-tumor effects, 
including apoptosis induction, immune response 
modulation, tumor targeting, tumor growth inhibition, and 
other mechanisms. Several appropriate tools were used to 
assess the inclusion of studies, including the Cochrane 
Collaboration's Risk of Bias tool for randomized controlled 
trials for non-randomized studies. Upon the completion of 
independent quality assessments by both experts, the 
inconsistencies between the two were discussed. 

 
2.3. Data analysis 

 
Data synthesis and analysis were based on a narrative 

framework since the included studies are heterogeneous. A 
descriptive summary of the evidence aimed to provide a 
comprehensive overview. The results were arranged and 
presented according to the type of cancers investigated. 

 

3. Results  

Anti-tumor properties of S. typhimurium against cancer, 
and a systematic review of these studies were conducted. The 
review included 480 studies, which met the inclusion criteria, 
from 530 publications. Overall, 50 of them were duplicates 
and were excluded. Among these, 137 full-text articles were 
reviewed for eligibility. As a result of removing duplicates 
and screening the articles for eligibility, 24 articles were 
included in the quantitative synthesis (Figure 1). 
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3.1 Anti-tumor mechanism of Salmonella typhimurium 
 
3.1.1. Hypoxic environment and tumor vasculature 

 
A tumor's blood supply is unevenly distributed and 

chaotic, resulting in chronic and acute hypoxia29. As a 
result, oxygen delivery to the cells is diminished, and the 
proliferation of the cells is disrupted. Bacteria, such as S. 
typhimurium, thrive in hypoxic environments30. An 
abnormal vasculature can result from tumor angiogenesis 
that, in comparison with normal tissue, is more 
vascularized31. It is likely that S. typhimurium can invade 
such an unruly and highly vascularizing tumor 
microenvironment32. These facultative anaerobic bacteria 
are more likely to be localized. It begins to kill tumor cells 
so that they can survive and take up nutrients. In addition, 
chaotic vasculature contributes to the disorder33. A double-
auxotrophic mutant S. typhimurium strain A1-R with 
tumor-targeting properties has been demonstrated to 
increase vascularity and destroy tumor blood vessels34. 

 
3.1.2. Abundant nutrients and competitive nature of 
Salmonella typhimurium 

 
There are a variety of micronutrients in the tumor 

microenvironment35. In a study of lung and pancreatic 
adenocarcinomas in mice, nutrients positively influencing 

cancer cell metabolism differed between tumors and the 
circulation36. Cancers generate energy and biomass 
through metabolic adaptation, which accumulates 
metabolites. Moreover, it alters the expression of normal 
genes37. The tumor's microenvironment is immune-
suppressive. As a result, by providing nutrients and 
protecting the bacteria from host immunosurveillance, 
these compounds could enable attenuated auxotrophic 
bacteria to survive and grow38. It has been found that 
prostate cancer and breast cancer can be treated in mice 
models by employing auxotrophic Salmonella for 
tryptophan, arginine, and leucine39.  

 
3.1.3. Tumor penetration 

 
Salmonella typhimurium has been chosen for BMCT due 

to its potential for deep tumor penetration40. Passive 
transport is traditionally used to distribute 
chemotherapeutic drugs. Salmonella typhimurium invades 
deep tumor tissues by utilizing the abundant nutrients 
surrounding it. When S. Typhimurium has been 
administered systemically, apoptosis is induced by 
systemic subcutaneous administration41. In tumor tissue, 
bacterial motility influences the spatial distribution of 
bacteria; the motility of bacteria increases their 
penetration depth42. It has also been suggested that tumor 
migration of S. typhimurium is not dependent on motility or 
chemotaxis but a passive process. In order to study the 

 

 
                            Figure 1. Methodology of the current study 

 



Taheri SA et al. / Journal of Lab Animal Research. 2023; 2(5): 51-62. 

 

54 

events of tumor-colonization, different strains, and time 
points post-infection were used in vivo43. Tumor tissue is 
protected from bacteria by neutrophils; bacteria colonize 
intratumor more readily when their numbers are 
diminished44. 

 
3.1.4. Apoptosis and autophagy-inducing intrinsic anti-
tumor action 

 
Salmonella typhimurium has been shown to directly 

kill cancer cells in several in vivo studies45,46. Genetically 
engineered S. typhimurium strain A1-R infected cancer 
cells have grown into large colonies, as revealed by high-
resolution multiphoton tomography images47. Salmonella 
typhimurium can induce both apoptosis and autophagy 
when it enters the cells of cancer cells45,48. There is no clear 
understanding of how S. typhimurium induces apoptosis. 
Bacterial toxins and competition for nutrients with cancer 
cells may cause apoptosis. In addition, autophagy may be 
induced; in tumor cells, scavengers are less active than in 
normal cells, meaning they are less active49. Phosph-
Protein Kinase B (P-AKT) is downregulated in an AKT-
dependent manner/ The Phosph-mammalian Targets Of 
Rapamycin (P-mTOR) pathway regulates cellular 
proliferation and survival50. Cellular physiology and 
homeostasis are influenced by the P-AKT / P-mTOR 
pathway. Matrix MetalloProteinase 9 (MMP-9) expression 
is reduced by the downregulation of this pathway, which is 
involved in metastasis; this oncoprotein plays an important 
role51. 

 
3.1.5. Inhibition of angiogenesis 

 
It is essential to understand that angiogenesis plays a 

crucial role in tumor progression and development,  HIF-1α 
and VEGF play a vital role in tumor angiogenesis52. The 
invasion of S. typhimurium in a tumor decreases the 
expression of VEGF and HIF-1α, inhibiting tumor 
angiogenesis by activating the P-AKT/P-mTOR pathway53. A 
recently identified tumor angiogenesis inhibitor protein is 
another mechanism for suppressing angiogenesis; through 
HIF-1, Connexin 43 (Cx43) inhibits VEGF expression besides 
interfering with its composition54. A tumor-targeting double-
auxotrophic mutant S. typhimurium strain A1-R shows an 
association between a higher tumor vasculature and the 
destruction of tumor blood vessels55. 

 
3.1.6. Immunomodulation in tumor tissue 

 
In animal models, S. typhimurium can manipulate the 

immune components of the tumor function to inhibit tumor 
growth by changing the tumor microenvironment from an 
immunosuppressive to an immunogenic state56. Evidence 
shows that S. typhimurium infection increases macrophage, 
natural killer (NK), CD4+ helper T cells, and CD8+ cytotoxic 
T cell infiltration57. Colony-Stimulating Factor 1 (CSF-1) 
and Chemokine C-C motif chemokine Ligand 2 (CCL-2) are 
chemo-attractants released by tumor cells in order to 
recruit monocytes that undergo differentiation into 

macrophages of the M2 subtype58,59. Tumor growth and 
malignancy are promoted by M2 macrophage polarization, 
which secretes immune-suppressive molecules to suppress 
antitumor immune responses in the host60. As a result of S. 
typhimurium invasion, these cytokines are released, including 
IL-10 and arginase 1 (Arg1)61,62. It has been demonstrated 
that TAMs activate M1 macrophages by releasing various 
activation markers, such as Sca-1 and MHC class II, in 
response to S. typhimurium invasion63. This is a paradigm 
shift from M2 to M1. The M1 macrophages orchestrate the 
anti-tumor immune responses by expressing nitric oxide 
synthase (NOS2) and TNF-α, which enhance the protective 
immune response to tumors in vivo41. 

A T cell that inhibits cytotoxic T-lymphocytes specific 
for tumor antigens mitigates antitumor immunity64. When 
injected into a colon cancer model, attenuated S. 
typhimurium reduces regulatory T (Treg) cell65. Cell surface 
molecule CD44, present on both cancer cells and Treg, is 
downregulated by Salmonella treatment66. Gap junction 
formation can be facilitated by S. typhimurium infection by 
upregulating CX4367. Tumor cells can present antigenic 
peptides to dendritic cells via gap junctions. Through 
antigenic presentation, cytolytic T cells can be activated 
against the tumor antigen, ultimately responsible for 
halting distant uninfected tumor growth in vivo68. 

 
3.1.7. Orchestration of tumor-associated macrophage 
function and polarization 

 
The tumor-associated macrophage (TAM) is a 

constituent of the leukocytic infiltrate and has been used as 
a paradigm for cancer-related inflammation, tumor growth, 
invasion, metastasis, and drug resistance69,70. It is well-
known that M1 macrophages have anti-tumor properties, 
whereas M2 macrophages promote tumor development, 
angiogenesis, and progression71. There are two sides to 
TAM, exhibiting pro- and anti-tumor activity, and this cell 
has high immunological reprogramming potential, 
especially in the presence of IFN-α or IFN-γ72. In a different 
approach, suppression of TAMs can be achieved by 
designing cancer vaccines against proteins which are 
overexpressed by TAMs, such as Legumain73. Legumain 
encodes an asparaginyl endopeptidase that is highly 
upregulated in murine and human tumor tissues74. 

 
3.1.8. Release of cytotoxic chemicals 

 
During S. typhimurium treatment, cytotoxic compounds 

such as granzyme and perforin are released to kill tumor 
cells75. Immunomodulatory molecules, such as chemokines 
and cytokines, stimulate the immune system to eliminate 
tumors. Consequently, several cytotoxic agents, including 
Fas ligand (FASL), IL-18, TRAIL, IL-2, TNF-α, and cytolysin 
A, have been expressed in S. typhimurium in vivo76-80. 
Breast and colon tumors were inhibited by S. typhimurium 
engineered to express FASL, a proapoptotic cytokine 81-83. 
Moreover, murine mammary tumors expressing the 
cytotoxic protein HlyE under hypoxic conditions showed 
increased necrosis and reduced growth when said with a 
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hypoxia-inducible promoter84. The RecA promoter is used 
in S. typhimurium to control the secretion of murine TRAIL, 
growth of mammary tumors delayed, activated 
apoptosis85,86. Similar results were achieved by hypoxia-
induced nirB-regulated TRAIL for the suppression of 
melanoma in vivo87. 

 
3.1.9. Role of the type III secretion system 

 
The virulence factor of S. typhimurium is well known, 

and it is encoded by Salmonella pathogenicity island 1 
(SPI1) as the type III secretion system (T3SS)88. As a result, 
it is possible to inject effector proteins directly into host 
cells. Signaling pathways within cells are interfered with 
the cytoskeleton network in the host cell can be 
manipulated, and colonization is enabled76. They can 
produce and store most of the effector proteins secreted by 
the T3SS89. Injection of Salmonella pathogenicity island 2 
(SPI2) effector molecules promotes cellular invasion 
promoted by SPI190. Salmonella is resistant to most host 
defense mechanisms due to their ability to reconstruct 
endosomes into Salmonella-containing vacuoles to avoid 
host defense mechanisms and to enable intracellular 
survival91,92. Thus, SPI1 and SPI2 work together to facilitate 
the invasion of native forms or bacterial vectors93. It is, 
therefore, possible for S. typhimurium to induce apoptosis 
in established infection, and this has been confirmed by S. 
typhimurium effector expression causing apoptosis in 
tumor cells through activation of caspases 3 and 7, SpvB 
(an ADP-ribosyl transferase enzyme)94.  

P-glycoprotein is expressed in many cancers and is 
downregulated by S. typhimurium effector SipA such as 
breast, kidney, colon, and lymphoma95-97. Proteins of the 
T3SS family, such as inner rod proteins, needles, and 
flagellins inner rod, are perceived by nucleotide-binding 
oligomerization domain (NOD)-like receptor (NLR) family 
apoptosis inhibitory protein (NAIP) to activate the NAIP-
NLR family caspase-associated recruitment domain-
containing protein 4 (NLRC4)98. Caspases-1 and -8 are 
activated due to the assembly of the NLRC4 
inflammasome99. As caspase-1 is activated, pyroptosis is 
induced, and caspase-8 stimulates caspase-3/7, resulting in 
the inflammatory death of the host cells, known as 
PANoptosis100-102. When effector proteins are internalized, 
the host immune response is modulated, cytokines are 
secreted, the cytoskeleton of the host cells is rearranged, 
and the invasion of bacteria is facilitated76,103. To develop 
cancer vaccines, we must improve antigen delivery; a 
promising strategy is Salmonella T3SS. Mice with tumors 
expressing NY-ESO-1 regressed when NY-ESO-1 tumor 
antigen was administered through T3SS104. Heterologous 
antigens like Listeria monocytogenes' MHC class I-peptide 
p60 were employed to translocate into host cells using 
T3SS from Salmonella, CD8 T cells induced by antigens, 
regression of tumors is significant105 . Survivin, an antigen 
that is transported into antigen-presenting cells by SPI2, is 
an effector of immune responses induced by the SseF 
protein of SPI2106. In a mouse model, TAA was delivered via 
the SPI-2-regulated T3SS to stimulate anti-tumor activity 
(Figure 2)107. 

 

 
Figure 2. Anti-tumor mechanisms of S. typhimurium. Key strategies employed by Salmonella typhimurium for combating tumorsinclude its affinity for 
hypoxic tumor environments and chaotic vasculature, its competitive nature in utilizing abundant nutrients, its ability to induce apoptosis and autophagy 
within cancer cells, its inhibition of angiogenesis, and its role in immunomodulation in the tumor microenvironment. Together, these mechanisms 
illustrate how S. typhimurium exerts a multifaceted anti-tumor action, potentially impacting tumor vasculature, nutrient availability, and immune 
responses to facilitate tumor reduction. 
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4. Salmonella typhimurium's selective tumor 
targeting 

 

Cancer researchers have been intrigued by S. 
typhimurium's ability to specifically target tumor tissues108. 
Several intricate factors will be discussed in this subsection 
that S. typhimurium has the potential to benefit cancer 
patients over traditional cancer therapies because of its 
preferential tumor homing. 
Various factors contribute to the unique conditions of the 
tumor microenvironment109. Healthy tissues do not have 
those characteristics. An inefficient or irregular blood 
supply causes low oxygen levels and vasculature leaks in 
tumors, providing an escape route for molecules and cells. 
Salmonella uses these proteins to selectively target tumors 
in both cases, leaky vasculature and hypoxia110. 
Chemotaxis is one of the most remarkable abilities of 
Salmonella; chemical gradients can be sensed and 
responded to by the body111. When it comes to targeting 
tumors, Salmonella can detect various chemotactic signals 
in the tumor microenvironment; bacteria are guided 
toward the tumor by these molecules112. Several signals are 
generated by necrotic and hypoxia areas inside the tumor, 
including metabolites, specific molecules, and gradients of 
nutrients113. 
A tumor is infected with Salmonella once reached; it can 
increase selectively within the tumor because of its 
nutrient-rich environment and relative protection114. 
During tumor microenvironment invasion, bacteria can 
take advantage of the weakened immune system to exploit 
available nutrients; the tumor can survive and reproduce 
more easily115.  
During tumor growth, the leaky vessels allow Salmonella to 
enter the tumor tissues and extravasate from the 
bloodstream116. Salmonella can access the tumor due to 
this vascular permeability, how it can be improved, 
produce anti-tumor effects, and replicate them117. The 
molecular interactions between Salmonella and tumor cells 
have been demonstrated in studies. Virulence factors are 
expressed by certain Salmonella strains; it allows them to 
attach to receptors on tumor cells that are expressed in a 
preferential manner, enabling cancer cells to be targeted 
and internalized118. 
Immune responses are triggered by Salmonella's presence 
in the tumor microenvironment119. Immune cells can be 
activated by bacteria, like dendritic cells and macrophages, 
in the immune response against tumors; they play a critical 
role120. As a result of this immunomodulatory effect, the 
immune system may be able to respond more aggressively 
to Cancer and enhance anti-tumor activity. 
 

5. Preclinical studies and animal models 
 
Research involving Salmonella-based anti-tumor 

therapies has shown great potential for establishing 
Salmonella's therapeutic potential for a variety of 
cancers121. Animal models were used in these studies, 
which provide invaluable insights into how Salmonella 

affects cancer progression and growth biologically and 
therapeutically. Salmonella has been shown to be effective 
in treating different kinds of cancer and in combination 
with existing therapies in some notable preclinical 
studies24,122. 

An animal model of breast cancer was used in recent 
studies123. Cancer cells were specifically targeted by 
Salmonella strains that carried cytotoxic genes124. As a 
result of the S. typhimurium being administered, there was 
a significant reduction in tumor size and an important 
tumor regression was observed in the mice treated with 
Salmonella administered intravenously, which led to 
prolonged survival125,126. Through this method, S. 
typhimurium was demonstrated to be capable of selectively 
targeting and inhibiting the growth of breast cancer cells in 
vivo127. 

Another preclinical study using Salmonella as a vehicle 
for gene therapy in mice with prostate cancer was 
conducted128. Salmonella engineered to infiltrate prostate 
tumors successfully activated immune responses that 
targeted prostate tumors129,130. A Salmonella-based therapy 
could benefit prostate cancer patients by boosting anti-
tumor immune responses through enhanced reduced 
tumor growth and tumor cell killing in vivo131.  

A Salmonella-based therapy has been shown to reduce 
tumor burden in mouse models of colorectal cancer132. 
Anti-cancer agents expressed by Salmonella, such as tumor 
necrosis factor (TNF), to treat colorectal cancer, were used. 
As a result of the treatment, growth, and tumor size were 
significantly reduced.  

In an in vivo study, ovarian cancer is modeled in mice, 
along with standard chemotherapy drugs, Salmonella 
was administered133. Chemotherapy alone had no anti-
tumor effects, but combination treatment had enhanced 
outcomes. There was a significant reduction in tumor 
growth and increased survival rates with the 
combination treatment compared to chemotherapy 
alone. As a result of Salmonella's synergistic action with 
chemotherapy, combination therapies can strengthen 
tumor regression134. It is important to note that immune 
checkpoint inhibitors have been studied in combination 
with Salmonella-based immunotherapies, which cancer-
fighting drugs increase the immune system's ability to 
fight cancer135. Salmonella-based treatment and immune 
checkpoint inhibitors have been shown to significantly 
reduce tumor size and prolong survival in preclinical 
studies in mouse models of melanoma136,137. 
Immunotherapies can be enhanced and complemented 
by Salmonella in this way138. 

 

6. Challenges 
 
Live-engineered bacteria represent a unique 

therapeutic opportunity that is accompanied by a number 
of challenges139. First, genes or motile genetic elements 
confer antibiotic resistance to living naturally modified 
bacteria. It is safer and more stable to engineer the 
expression cassette using chromosomal integration 
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without antibiotic selection markers140. Second, the 
manufacturing of GMP-grade test articles presents a 
specific challenge because live bacteria can neither be 
sterilized by heating nor filtered141. Furthermore, there 
would be no way to test for sterility by the conventional 
regulatory standard. In order to ensure "sterility," 
dedicated clean rooms with strict aseptic protocols and 
frequent monitoring of the process must be used during 
purification and production142. However, the final 
products need to be tested to ensure that no other 
diseases or conditions are present, even though they 
cannot be proven to be sterile. The third reason is that 
live bacteria proliferate in target tissues and thus 
spread143. It is not necessary that the administered dose 
corresponds to the effective dose (toxic or therapeutic)️. 
Target tissue "quality" influences the effective dose more 
than anything else which is determined by accessibility, 
whether there is hypoxia/tumor necrosis, and if pre-
existing inflammatory cells have infiltrated the tumor144. 
Bacteria, at low doses, particularly when administered 
systemically, can harm the immune system145. It is less 
predictable and can take much longer for an infection to 
establish itself in the target tissue. Over time, the 
patients may become less vigilant, posing a greater risk. 
Fourth, oncolytic therapy involves turning a tumor into 
an infection that destroys the cancer; this could lead to 
severe consequences without proper management. It is 
essential to strike a carefully calculated balance between 
an infection's therapeutic benefits and toxic side effects. 
The practical difficulty of achieving this is great, 
antibiotics are effective only when administered on time, 
which would allow the infection to be eradicated before 
the anti-tumor effect was achieved146. A systemic 
inflammatory response risk during a late intervention is 
much higher. A multidisciplinary approach is needed to 
manage therapeutic infections, including oncologists 
Surgeons, interventional radiologists, or infectious disease 
specialists need to manage conditions requiring invasive 
treatment 142. If an intratumoral infection is established, it 
is the team's responsibility to decide what to do and when 
to intervene. Fifth  , in clinical settings, live biological agents 
are used. Public health and the environment are always 
concerns when it comes to its potential impacts147. 

 

7. Future and prospect 
 

Researchers are working to better understand Salmonella's 
mechanisms and address its weaknesses in order to 
develop future anti-tumor therapies based on 
Salmonella123.  As a result of personalized medicine 
approaches, salmonella-based anti-tumor treatments may 
become a major part of the future treatment of cancer141. 
Personalized medicine incorporates genetics, molecular 
biology, and immunity into treatment planning. 
Salmonella's genetic engineering capability allows precise 
therapeutic strategies. Salmonella, which can be genetically 
engineered to produce antigens and receptors specific to 
cancer cells, can be used to selectively kill cancer cells 
without harming healthy cells139. 

Research can optimize Salmonella's anti-tumor properties 
by changing its genetic makeup; by enhancing its apoptotic 
capability, researchers could improve its immune-
stimulating properties for different cancer types117. The 
presence of specific biomarkers can indicate the efficacy of 
Salmonella-based therapies. This approach selects patients 
based on their biomarkers to optimize treatment efficacy 
and minimize side effects48,57. 
When Salmonella-based treatments are combined with 
other immunotherapies, they can be more effective at 
treating cancer; they may produce a synergistic effect. 
This combination approach boosts the immune system 
and overcomes immunosuppressive microenvironments 
to prevent tumors from spreading. Salmonella-based 
therapies can combine immune checkpoint inhibitors 
with immune checkpoint inhibitors when the immune 
system encounters cancer cells, it attacks them122. 
Salmonella can enhance antitumor responses by 
activating immune responses and modulating the tumor 
microenvironment. 
CAR-T cell therapy targets specific cancer antigens, with 
T cells engineered to target those antigens. It is more 
likely that CAR-T cells will enhance anti-cancer activity 
and tumor infiltration when delivered directly to tumors 
using Salmonella. A cancer vaccine is a personalized 
treatment because it incorporates tumor antigens into 
Salmonella65. Vaccines may help identify and destroy 
cancer cells by stimulating the immune system104. 
 

8. Conclusion 
 
The current study has unveiled a groundbreaking 

frontier in the battle against cancer by harnessing the 
remarkable antitumor properties of S. typhimurium. 
Through a series of innovative in vivo studies, the current 
study has demonstrated the unprecedented potential  of 
this bacterium as a novel therapeutic agent. This study 
not only shed light on the underlying mechanisms of 
Salmonella's anti-cancer effects but also paved the way 
for the development of cutting-edge treatments that 
exploit this unique biological weapon. This exciting 
discovery holds promise for a future where S. 
typhimurium stands as a formidable ally in the fight 
against cancer, offering new hope and novel strategies 
for improving patient outcomes. 
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