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 Approximately, 1 to 2% of the population in developed countries suffer from chronic 
wounds. Nearly 6.5 million Americans have suffered at least one chronic wound. 
Chronic wound treatment is critical for patients to maintain their mental and physical 
well-being and improve their life quality. Chronic wounds can be treated in various 
ways, including hyperbaric oxygen therapy, debridement, ultrasound, skin grafts, 
negative pressure wound therapy, electromagnetic therapies, and hydrogel dressings. 
Hydrogels are among the most viable and promising options since their tunable 
characteristics, such as adhesiveness, antimicrobial and biodegradability, pre-
angiogenic bioactivities, and anti-inflammatory, are beneficial to healing chronic 
wounds. In in vivo studies utilizing animal models, hydrogel dressings emerged as 
multifunctional solutions for chronic wound healing. These investigations consistently 
demonstrated that hydrogel dressings accelerated wound healing rates compared to 
traditional methods and maintained an optimal moist wound environment, which 
fostered tissue regeneration while minimizing scarring. Moreover, the remarkable 
biocompatibility of hydrogel dressings became evident in these animal model 
experiments, as they showed minimal adverse reactions in chronic wound patients. 
The results of these in vivo studies collectively highlight the promising potential of 
hydrogel dressings as a versatile therapeutic option for effectively managing chronic 
wounds. This review discusses dressings made of hydrogel in animal models for their 
multifunctional properties and potential benefits in treating chronic wounds. The 
efficacy of hydrogel dressings over other kinds of dressings is also demonstrated by 
providing examples of commercially available hydrogel dressings. 
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1. Introduction

Skin injuries can be caused by physical or thermal 
trauma, as well as by medical conditions that can disrupt 
the body’s normal function or result in physiological 
instability due to these conditions1. There is increasing 
evidence that wound healing is one of the most dynamic 
biological processes, along with the interaction of 
biomolecules and stem cells contributing to the repair of 
wounds at every level2. Chronic wound healing can result 
from any disorder of these factors. Several physiological 
factors can interfere with the healing process of chronic 

wounds, such as diabetes, considered the largest cells of 
the body3. The presence of these factors prevents the 
wound healing process from progressing to the next stage4. 
In addition to the high morbidity, mortality, and recurrence 
rates associated with diabetes-related chronic wounds, 
they are one of the leading causes of nontraumatic 
amputations worldwide5. 

It has been demonstrated in several in vivo studies that 
reactive oxygen species (ROS) promote wound healing by 
triggering cell migration and angiogenesis6-8. Nevertheless, 
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large amounts of ROS can impair or halt wound healing, 
particularly chronic wounds9. An inflammatory response to 
chronic wounds increases ROS production, overriding the 
cell’s antioxidant capacity and preventing wounds from 
progressing to the proliferative phase6. Eventually, it caused 
chronic wound healing by keeping the wound in an 
inflammatory cycle for a prolonged period10. Therefore, 
maintaining redox balance in cells to obtain antioxidants may 
prevent immune system disorders and abnormal cell growth. 
It has been shown in vivo that antioxidation accelerates 
wound healing, particularly for chronic wounds11. Thus, 
using antioxidants has become an effective method of 
speeding up the healing process of chronic wounds. 

Dressings made from hydrogel are considered ideal 
candidates for chronic wounds and have already been used 
in vivo 12,13. With its 3-D structure, improved permeability, 
great biocompatibility, and ability to provide wound healing 
in a wet environment, this dressing is ideal for wound 
healing, it is ideal for wound healing14. As a result, traditional 
dressings no longer have their shortcomings. Antioxidant-
infused hydrogel dressings have been developed to speed up 
chronic wound healing15. As a result, chronic wound 
treatment has become more and more favorable16. Chronic 
wounds can be repaired more rapidly with the antioxidant 
hydrogel by reducing oxidative stress, improving wound 
microenvironment, and reducing oxidative stress17. With 
antioxidant hydrogels, chronic wound healing can be 
accelerated18. This review comprehensively describes 
hydrogels and their role in chronic wound healing. Also, this 
review discusses dressings made of hydrogel in animal 
models for their multifunctional properties and potential 
benefits in treating chronic wounds. The efficacy of hydrogel 
dressings over other kinds of dressings is also demonstrated 
by providing examples of commercially available hydrogel 
dressings. 

 

2. Wound healing  
 

2.1. Acute wound healing  
 
Acute and chronic wounds can be classified based on 

their nature of wound healing, and follows an orderly and 
dynamic process19. An acute wound, also known as a 
normal wound, is usually caused by mechanical trauma, 
burns, or chemical exposure. Usually, it takes 8–12 weeks 
for the wounds to heal completely, leaving no scars20. 
Healthy skin includes skin layers such as epidermis, 
subcutaneous, and dermis21. 1) The epidermis is the most 
outer layer of the skin. In addition to effectively controlling 
water loss, the epidermis also acts as a barrier against 
external stimulation because of its high impermeability22. 
2) The dermis is a layer of skin that consists of extracellular 
fibroblasts, matrix, elastin, and glycosaminoglycan. It 
provides skin physical support, flexibility, and protection 
from UV rays23. 3) Adipose tissue is well vascularized in the 
subdermal layer, which regulates skin temperature and 
gives the skin elasticity. Healing wounds can be better 
understood by understanding normal skin composition24. 

Recovery from normal tissue injury involves a series of 

complex processes occurring promptly and orderly25. 
Hemostasis, inflammation, proliferation, and maturation 
are the four parts of these complex processes26. Hemostasis 
is the first process after injury and bleeding27. A wound 
site’s exudates will coagulate with coagulation factors, 
providing mechanical support for the injured tissue28. 
During the inflammatory stage, debris is removed by 
monocytes, inflammatory cells, lymphocytes, and 
macrophages, which prepare wound beds for the formation 
of granulation tissue29. The proliferative process involves 
the replacement of damaged tissue by fibroblasts and 
epithelial cells, followed by the formation of granulation 
cells on the wound’s surface30. As the final stage, 
remodeling entails developing connective tissue and new 
epithelium. These phases are not strictly and explicitly 
differentiated in terms of period but overlap31. Moreover, 
the duration of the transition overlap period is usually 
determined by the differentiation and maturation of 
various wound-healing cells, such as fibroblasts and 
macrophages. 

 
2.2. Chronic wound healing  

 
According to clinical definitions, a chronic wound is 

caused by numerous causes that cannot automatically 
return to normal within three months and show no sign of 
healing32. Further, chronic wounds tend to heal slowly due 
to potential physiological conditions, such as recurring and 
diabetes33. The most common causes of chronic wounds 
are sustained stimulation, such as repeated tissue damage, 
persistent inflammatory responses, or hyperglycemia34. 
Antibiotics is not effective against bacteria if uncontrolled 
inflammation results in the self-secretion of extracellular 
polysaccharide matrix35. Persistent hyperglycemia can also 
directly lead to high ROS concentrations in the blood 
through advanced glycation end products (AGEs)36. 
Consequently, metabolic disorders may affect blood vessel 
structure and tissue regeneration by disrupting the redox 
balance of the cells. 

There are quite a few hazards associated with chronic 
wounds. Not only are they challenging to treat promptly, 
but they also burden patients with substantial financial 
obligations37. Beyond the risk of infection, chronic wounds 
can also result in amputations and even death38. 
Additionally, these wounds can cause nutritional 
deficiencies, further weakening the body’s resistance and 
giving rise to various complications. Accordingly, chronic 
wound healing impairment is more complex and serious 
than normal healing because it involves much more 
complex problems and symptoms39. A detailed analysis of 
the causes and hazards of chronic wounds is presented 
first, followed by a detailed analysis of the specific factors 
and mechanisms that contribute to chronic wound healing 
impairments40. 

 

3. Wound healing treatments 
 
Dressings of the modern age are mostly classified 

according to the materials they are made of, such as 
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hydrogels, films, and foam boards41. Hydrogel dressings 
prevent fluid loss, purulent substances from accumulating, 
and crust-forming organisms from infection and 
propagating bacterial growth 42,43. They are now regarded 
as among the best chronic wound treatment materials 
available44. In addition to keeping wounds dry and 
preventing bacterial infections, traditional dressings also 
absorb large amounts of exudates, which can lead to 
infection45. Several moisturizing copolymers are designed 
as hydrogel dressings to absorb large amounts of wound 
exudate while keeping the wound moist and promoting 
wound healing46. Additionally, wound dressings have been 
proposed to enhance the migration of leukocytes, promote 
gas exchange, remove excessive exudates, prevent 
infection, and even provide heat insulation and prevent 
reinjury47. The development of functional hydrogels led to 
materials with high biocompatibility and biodegradability 
and various functions (such as antimicrobial and 
antioxidative properties, injectable properties, and anti-
inflammatory properties)48. Due to their multifunctionality 
and multi-stage combination therapy capability, 
multifunctional hydrogels are useful in biomedical and 
pharmaceutical applications49. Because antioxidant 
research is rapidly developing and ROS poses great 
dangers to chronic wounds, the combination of antioxidant 
function and hydrogel has attracted much attention, and 
there have been some new hydrogel dressings developed 
with antioxidant functions, leading to a revolution in 
chronic wound treatment50. 

 
3.1. Wound dressings 

 
To promote wound healing, wound dressings are 

applied to the wound. For efficient clinical performance, an 
ideal wound dressing should eliminate or absorbe 
excessive fluids and exudates from the wound environment 
while maintaining moisture, prevent bacterial growth, 
permit gas flow which prevents external trauma to the 
wound, allow simple removal or biodegradable so that it is 
not painful to remove and does not damage newly formed 
tissue, decrease surface necrosis and maintaining cell 
viability, alleviate wound pain, and affordability51-53. 
Dressings for wounds of different types have been 
explored. However, their applicability varies according to 
wound characteristics, for example, the depth of the wound 
and the amount of fluid exuded. A description of common 
wound dressing types is provided in the following section. 

 
3.2. Films 

 
In addition to protecting against damage and external 

contamination, a film dressing keeps the wound environment 
moist by providing an optically transparent, thin layer of 
polymeric material54. Various properties can be added to 
them, such as gas permeation, adhesion, and antimicrobial 
properties55,56. Nevertheless, removing a film dressing can be 
difficult and damage newly formed tissue57. Moreover, 
because the films cannot collect and remove fluid from a

wound environment, newly differentiated keratinocytes may 
be damaged by accumulated fluid58. It is important to use 
dressings that can be easily removed from chronic wounds to 
reduce the risk of injury to cells and tissues. 

 
3.3. Gauze 

 
In medical terminology, gauze dressings are known as 

wet-to-dry dressings. An ordinary gauge is a thin, 
transparent, elastic, gas-permeable, nontoxic, biocompatible, 
and biodegradable, transparent polymeric material59. The 
weave structure of gauze is free and open. The warp yarns 
are crossed before and after each pair of weft threads in the 
weft yarns. It holds the gauze firmly in place. The gauze 
dressings are used to dry superficial wound debris and 
adhere to necrotic tissues60. Moreover, gauze dressings 
prevent microbial contamination of wounds. As a result of 
tissue cooling during the transition from inflammation to the 
proliferation phase, leukocytes and phagocytes are unable to 
function properly61. Further, gauze can adhere to tissue 
surfaces, causing hypoxia, vasoconstriction, and re-injury 
when dried, which may hinder tissue healing62. By 
impregnating gauze with petrolatum, saline, or hydrogels, the 
functionality is improved63. Using these modifications, gauze 
can maintain wound moisture while preventing local cooling, 
eliminating adverse effects. 

 
3.4. Foam dressings 

 
The exudates in chronic wounds can be absorbed by 

foam dressings, which are strong adsorbents64. They also 
insulate the wound area without adhering to it while 
providing a moist environment. Additionally, foam 
dressings can be designed with adhesive borders to adhere 
to the skin without sticking to the wound bed65. To keep 
the dressings secure on the wound, a secondary dressing 
may be needed66. The foam might adhere to the wound 
unless it is moist or has a high level of exudate. 

 
3.5. Hydrocolloid dressings 

 
Hydrocolloid dressings provide an insulating and moist 

environment that can protect wounds without infecting 
them and stimulate the body’s natural enzymes so that 
granulated tissue can be formed67. It is also important to 
note that hydrocolloid dressings have limitations as well. A 
gel-like fluid drain, with an unpleasant odor, might result 
from their over-promotion of granulation tissue. A 
hydrocolloid dressing may also have difficulty treating 
wounds around cavities68. This method indeed has several 
advantages when it comes to wound healing. Still, other new 
and more convenient methods make the treatment of 
chronic wounds more efficient and comfortable69 (Figure 1). 

 

4. Healing chronic wounds with functional 
hydrogels 

 

The properties of hydrogels can be multifunctional.  
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Figure 1. Different types of wound dressings commonly used in clinical practice. Each dressing type is briefly described, including films, gauze, foam 
dressings, wound fillers, hydrocolloid dressings, and hydrogel dressings. The figure visually showcases the unique characteristics and applications of each 
dressing type, helping healthcare professionals make informed choices for wound management. The choice of wound dressing depends on factors such as 
wound depth, exudate levels, and desired wound healing outcomes, making this figure a valuable reference for medical practitioners and researchers in 
the field of wound care. 

 
Hydrogels for chronic wound healing can incorporate a 
variety of functional characteristics, such as biocompatibility, 
biodegradability, adhesiveness, vascularization potential, 
antimicrobial, anti-inflammatory, and proangiogenic 
properties70. To maintain tissue homeostasis during 
chronic wound healing, a hydrogel must be biocompatible 
to present a matrix suitable for local tissues without 
causing damage. As with fibroblast proliferation, re-
epithelialization and neovascularization, and chronic 
wound remodeling, hydrogels’ biodegradation and 
biodegradability rate are essential factors71. As well as 
keeping the wound moist, enhancing the homeostatic 
effect, and absorbing exudates during healing, hydrogel 
dressings are also highly stable when they have high 
bioadhesive72. It can be beneficial to prevent infections 
using antimicrobial hydrogels since prolonged healing of 
chronic wounds increases the risk of infection. Chronic 
wounds are delayed in healing mainly due to the 
inflammatory phase, as described before. In a recent in vivo 
study, an anti-inflammatory hydrogel can shorten the 
healing period by easing the transition from inflammation 
to proliferation73. Delays in chronic wound healing may 
also be due to inadequate oxygen and nutrient delivery74. It 
is possible to accelerate chronic wound healing by applying 
proangiogenic hydrogels that stimulate angiogenesis. 
Drugs or therapeutic agents can be incorporated into 
hydrogels to enhance their functionality. The release of 
drugs or therapeutic agents is controlled and sustained by 
hydrogels. Chronic wounds can be treated with hydrogel-

based wound dressings in various ways75.  
 

4.1. Chronic wound healing with biodegradable 
hydrogels 

 
A biodegradable material decomposes when it comes 

into contact with a biological environment76. As a result, 
the biodegradation rate of hydrogels is of special 
significance in the healing and regeneration of chronic 
wounds, especially those caused by burns and diabetes-
related foot ulcers, which can be particularly challenging to 
treat77. There should be a matching rate between the 
degradation rate and new tissue formation and remodeling 
rate. Different strategies may be employed to tailor 
biodegradability rates, such as changing polymer chain 
crosslinking degrees, blending/combining different 
polymers, or introducing protease-sensitive chemical 
functional groups78. Collagen and gelatin are commonly 
used as ECM-derived polymers to make biodegradable 
hydrogels79. Controlled enzymatic biodegradation and cell 
attachment during the remodeling and proliferation of 
tissues are made possible by these biomaterials’ intrinsic 
cell recognition molecules80. Physical crosslinking of 
collagen and gelatin leads to the formation of hydrogels 
when the temperature changes. Physiological 
temperatures, however, do not allow gelatin to retain the 
intact hydrogel structure81. The stabilization of gelatin-
based hydrogels is commonly achieved through 
cytocompatible chemical crosslinking. Photocrosslinkable 
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hydrogels are often formed by modifying gelatin with 
methacrylates (GelMA)82. Rapid degradation can be an 
issue when gelatin-based hydrogels are applied to wounds, 
but increasing gelatin concentration and polymer chain 
crosslinking can help tailor degradation behavior83. 
Biodegradable natural hydrogels based on polysaccharides, 
such as chitosan, dextran, and alginate, are also widely 
used in chronic wound healing in a recent in vivo studies84. 
They can enhance wound healing by enhancing 
granulation, neoangiogenesis, and migration, but they 
degrade more slowly than ECM-derived protein-based 
polymers85,86. In wound healing, hydrogels made from 
proteins and polysaccharides were shown to degrade 
acceptably when mixed, blended, or chemically 
crosslinked87. Based on the amount of gelatin in the 
mixture and the extent of photocrosslinking, the 
degradation of chitosan was reduced when methacrylated 
chitosan (ChMA) was mixed with gelatin88-90. Hyaluronic 
acid (HAMA) and GelMA were photocrosslinked in another 
study to form a hybrid hydrogel91. Compared to pristine 
GelMA hydrogels, GelMA hydrogels with stronger covalent 
bonds have a greater resistance to collagenase 
biodegradation92. 

 
4.2. Chronic wound healing with bioadhesive hydrogels 

 
It can provide long-term stability by using bioadhesive 

hydrogels to adhere hydrogel dressings to wet wound 
beds93. Hydrogels are flexible and stretchable, providing 
comfort to patients with wounds. Bioadhesive hydrogels 
can be removed more easily from wounds than 
conventional wound dressings, such as films and gauze94. It 
is possible to impart the bioadhesive properties of 
hydrogel dressings by modifying them with polyphenol-
derived moieties, such as catechol, dopamine, gallic acid, or 
tannic acid95. Modifying polyphenol-derived moieties can 
tailor adhesive properties to meet particular wound needs. 
Those with shallow or small chronic wounds benefit from 
highly adhesive hydrogel dressings, while those with deep 
or large chronic wounds benefit from less adhesive 
dressings96. CS-GA has strong biocompatibility, adhesive 
properties, and stretch capabilities. With greater amounts 
of GA grafted, the bioadhesion capacity was enhanced97. 
The GA modification also enhanced antioxidant and 
antibacterial properties, depending on the concentration of 
ROS scavenging98. CS-GA hydrogels healed skin defects 
more efficiently than gauze and gelatin sponges in an in 
vivo model99. They found that wound closure was better 
with CS-GA dressings due to their enhanced bioadhesivity 
and antioxidant activity. 

 
4.3. Chronic wound healing with antimicrobial 
hydrogels 

 
Hydrogel dressings provide an initial barrier to 

microorganism invasion into the wound bed. In chronic 
wounds, however, infection risks rise due to prolonged 
healing and excessive inflammation100. Various in vivo studies 
stated the antimicrobial activity of hydrogels with 

antibacterial, antiviral, and antifungal components101,102. 
Inorganic materials or antibacterial agents are commonly 
incorporated into hydrogels to create antibacterial 
hydrogels103,104. The most often used antibacterial agents for 
treating chronic wounds are organic compounds such as 
vancomycin, gentamicin, ciprofloxacin, fluoroquinolones, 
hematoporphyrin, penicillin, moxifloxacin, and cephalon-
sporins89. These antibacterial agents prevent bacterial 
growth by blocking DNA duplication or protein synthesis. To 
prevent drug resistance, antibacterial agents must be 
released from the hydrogel again and again105. By controlling 
the hydrogel’s stiffness, swelling, or degradation properties, 
antibacterial agents can be released more effectively106. Gold 
(Au) and silver (Ag) ions or their nanoparticles (NPs) have 
been used in in vivo studies for thousands of years to enhance 
wound dressings with antimicrobial properties107. After 
stabilizing them into microvesicles, such as liposomes, they 
can be loaded into hydrogels directly, or they can be loaded 
directly into hydrogels before stabilizing them. It is very easy 
to control the morphology, particle size, and surface 
chemistry of the hydrogel particles to control the 
antimicrobial performance of hydrogel wound dressings108. A 
recent in vivo study found that Ag+ and Ag NPs exhibit the 
highest antimicrobial activity in mammalian cells at 
appropriate amounts because they are both cytotoxic to 
mesophilic cells109. When Ag NPs are incorporated into 
hydrogels, they are effective against Gram-positive and 
Gram-negative bacteria. 

It has also been demonstrated in an in vivo study that 
metal oxides can be incorporated into hydrogels to 
promote chronic wound healing110. Several materials have 
been reported to have antibacterial properties, such as zinc 
oxide (ZnO), titanium dioxide (TiO2), and copper oxide 
(CuO2) in vivo111. Only certain types of bacteria resist some 
metal nanoparticles’ antibacterial properties. Antibacterial 
properties are inherent to some hydrogels. Among its 
properties is inherent antibacterial activity, such as 
Chitosan112. In addition to modifying membrane 
permeability, its polycationic structures interact 
electrostatically with the positively charged bacterial cell 
wall.  

 
4.4. Chronic wound healing with anti-inflammatory 
hydrogels 

 
Hydrogels that reduce ROS levels and enhance 

macrophage recruitment to wound beds are anti-
inflammatory113. Through these functions, wound healing 
is facilitated by inflammation, allowing for proliferation to 
take place, allowing the process to move forward, reducing 
healing times, and increasing healing speeds114. It has been 
shown that some hydrogels have intrinsic anti-
inflammatory properties115. Inflammatory responses can 
be regulated by CS and its derivatives, which help enhance 
the secretion of TGF-β, IL-1, and PDGF, accelerating 
angiogenesis, collagen production, and proliferation116. The 
ECM of the skin contains significant amounts of HA, which 
has inherent anti-inflammatory properties. A signaling 
cascade involving HA is believed to contribute to HA’s  
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Figure 2. Key factors influenced by hydrogel wound dressings in the wound healing process. Hydrogels can enhance wound healing by increasing the 
recruitment of macrophages, promoting angiogenesis, reducing levels of reactive oxygen species (ROS), and decreasing the risk of infection. Pro-
angiogenic hydrogels stimulate the formation of new blood vessels, while antioxidative hydrogels lower ROS levels. Additionally, antimicrobial hydrogels 
reduce the risk of infection by incorporating antibacterial, antiviral, or antifungal components. These attributes make hydrogel wound dressings valuable 
in facilitating effective wound healing by positively impacting critical factors within the wound microenvironment. 

 
function in recruiting inflammation cells around wounds, 
releasing cytokines, and reducing inflammation through this 
involvement117. A chemically attached anti-inflammatory 
agent, such as phenolic substances, can also add anti-
inflammatory properties to hydrogels118,119. In addition to 
plant extracts, antimicrobial peptides, and honey, these 
compounds can be obtained in other ways. The immune 
modulatory pathways recognize anti-inflammatory 
compounds to reduce inflammation and ROS levels around 
wounds120. To improve anti-inflammatory properties, 
targeting agents can be added to hydrogels to stimulate the 
body’s innate immune system121. It has been suggested that a 
sphingosine-1-phosphate receptor target may facilitate the 
activation of inflammatory cells, which has been shown to aid 
in wound healing by transitioning from an inflammatory 
state to a proliferative state122. Wound healing applications 
can also benefit from hydrogels containing bioceramics. A 
bioceramic particle encapsulated in gelatin/PCL nanofibers 
was shown to release silicon (Si) ions under controlled 
conditions, thereby reducing inflammation, increasing 
angiogenesis, and reinforcing epithelium123. 

 
4.5. Healing chronic wounds with drugs  

 
To facilitate wound healing, hydrogels can be combined 

with various types of drugs and therapeutic agents to 
increase the healing process124. It is of prime importance 
that the proteins are released from the hydrogel in a 

controlled and sustained manner so that their properties can 
be maximized125. A smaller pore size and a stiffer shape can 
lead to a more gradual release of physically encapsulated 
drugs than hydrogels with larger pores and softer 
shapes126,127. There is a direct correlation between the size of 
the pores in a hydrogel and the speed at which drugs are 
released from it. This can decrease the efficacy of 
medications. The covalent bonding of drugs to hydrogels 
enables controlled release kinetics of drugs even at low drug 
concentrations128,129. Delivering controlled amounts of drugs 
is possible using stimuli-responsive hybrid hydrogels130. PH, 
glucose levels, and temperature in the wound environment 
can alter these hydrogels’ physicochemical and biological 
properties131. Diabetic foot ulcers, for instance, are 
characterized by an acidic environment due to high glucose 
levels132. An acylhydrazone and imine bond between N-
carboxyethyl CS (N-CS), adipic acid dihydrazide (ADH), and 
HA-aldehyde (HA-ALD) was utilized to develop a hybrid 
hydrogel (Gel)70. Insulin was incorporated into the Gel to 
release insulin when the wound’s acidity rises (In+Gel). 
Labile acylhydrazone bonds were found to release insulin in 
response to an acidic pH. In a recent in vivo study, collagen 
deposition, glucose levels decreased in a rat model, and a 
full-thickness wound healed effectively (Figure 2). 

 

5. Conclusion 
 
Hydrogel dressings are versatile and multifunctional 
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tools for chronic wound healing. They maintain a moist 
wound environment, promoting tissue regeneration and 
reducing the risk of infection. In vivo studies have 
provided concrete evidence of their efficacy in 
accelerating wound healing, reducing inflammation, and 
stimulating tissue repair. These studies also underscore 
their ability to enhance angiogenesis and oxygenation, 
which are crucial for the wound healing process. 
Hydrogel dressings’ adaptability to various wound types 
makes them valuable in real-world clinical settings. Their 
continued use in in vivo research highlights their clinical 
relevance, and ongoing advancements in this field are 
expected to further improve their effectiveness in 
managing chronic wounds. Patients and healthcare 
professionals can anticipate enhanced quality of life and 
faster healing times as these innovative dressings 
continue to evolve and meet the complex challenges of 
chronic wound care. 
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