
                                                                                                                                 

  

 

 Review Article                                                                                                                                                                                             

 

 Cite this paper as: Gevargiz Sangar S, Agahi N, Azizi A, Hasheminezhad NS, Ghannad E, Nafei P, Babayi MM. In Vivo Stem Cell Discoveries: Promising 
Implications in Cancer Therapy. Journal of Lab Animal Research. 2023; 2(5): 23-32. DOI: 10.58803/jlar.v2i5.27  

The Author(s). Published by Rovedar. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.   

Journal of Veterinary Physiology and Pathology. 2020; 1(--): ---.  
 

http://jvpp.rovedar.com/   

       Rovedar  

Journal of Lab Animal Research. 2023; 2(5): 23-32.  
 

DOI: 10.58803/jlar.v2i5.27 

 

http://jlar.rovedar.com/   
 

 

  

In Vivo Stem Cell Discoveries: Promising Implications in Cancer Therapy 

Shimen Gevargiz Sangar1 , Negar Agahi2 , Alireza Azizi3 , Nikoo Sadat Hasheminezhad4 , Emad 

Ghannad5 , Parmida Nafei6 , and Mohammad Moeen Babayi7,*  

 

1 Faculty of Pharmacy, Università di Roma Tor Vergata, Roma, Italia 
2 Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran 
3 Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey 
4 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran 
5 Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran 
6 Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran 
7 Medical Doctor, Mashhad University of Medical Sciences, Mashhad, Iran 
 
* Corresponding author: Mohammad Moeen Babayi, Mashhad University of Medical Sciences, Mashhad, Iran. Email: Moeenbabayi@gmail.com 

 
A R T I C L E   I N F O  A B S T R A C T 

Article History: 
Received: 02/09/2023 
Revised: 28/09/2023 
Accepted: 04/10/2023 
Published: 25/10/2023 

 

 

 The remarkable regenerative abilities and versatility of stem cells have long attracted 
researchers. Recently, in vivo studies have revealed exciting results related to stem 
cells, particularly their use in cancer treatment. This review will provide an overview 
of these discoveries and their broader implications for the future. 
There is growing in vivo evidence that stem cells have immense therapeutic potential in 
treating various diseases, including cancer, because of their self-renewal and 
differentiation capabilities. As a result of in vivo research, critical aspects of stem cell 
behavior within tumor microenvironments have been clarified, providing a deeper 
understanding of their potential therapeutic utility. Several in vivo studies have 
demonstrated the potential of stem cell-engineered tumor-targeting agents or 
therapeutic payloads for the precise delivery of medicinal drugs when these agents are 
engineered to express them in tumor cells. Through targeted therapies, off-target effects 
can be minimized, and the therapeutic index of the anti-cancer agents can be improved. 
Several stem cell-based delivery systems have shown remarkable efficacy in preclinical 
in vivo studies, including breast, lung, and pancreatic cancer, indicating their potential as 
a novel therapeutic strategy. Moreover, in vivo studies have revealed that the 
immunomodulatory properties of stem cells modulate the immune response and modify 
the tumor microenvironment to suppress it. In particular, using checkpoint inhibitor 
therapy with stem cells has paved the way for innovative immunotherapeutic strategies. 
Research on stem cells in vivo has also provided invaluable insights into stem cell biology 
and their interaction with cancer cells. Due to these findings, there is an increasing 
understanding of tumor initiation, progression, and resistance mechanisms, which has 
opened avenues for improving cancer treatment by developing more effective 
treatments. As a result of the in vivo studies that have taken place so far, there is a wealth 
of information regarding the potential of stem cells in cancer treatment. This research 
opens up exciting prospects for the future of oncology, from the delivery of targeted 
drugs to immunomodulation and improving our understanding of tumor biology. 
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1. Introduction

There are 9.6 million cancer deaths yearly in developed 
countries due to cancer’s high mortality and morbidity rates1. 
Despite traditional therapies such as surgery, radiation, and 
chemotherapy, cancer recurrence remains challenging due to 
cancer stem cells’ self-renewal characteristics2. Various 

strategies for cancer therapy have been trending, like 
immunotherapy with parasites, such as Trypanosoma cruzi, 
Trichinella spiralis, and Echinococcus granulosus; however, 
they need more experimental studies for finding the exact 
mechanism behind3-6. Even after chemotherapy, a small 
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population of  cancer stem cells (CSCs) remains within the 
tumor. There may be epigenetic mutations associated with 
the chemoresistance of healthy stem cells7. The CSCs also 
express specific markers that help identify these rare cells in 
brains, breasts, colonies, and pancreatic cancers8. Moreover, 
CSCs in tumor tissues cause metastasis, cancer growth, and 
recurrence9. In addition, recent reports have suggested that 
CSC may be derived from stem cells or may result from the 
differentiation of a non-committed progenitor cell10,11. 

New therapeutic approaches can be developed by better 
understanding CSCs and their niche profiles12. An approach 
targeting specific cancer cell populations can be practical in 
identifying CSCs13. As a result of alteration in these pathways, 
CSCs develop, leading to tumor growth, metastasis, and even 
recurrence after treatment because of their high self-renewal 
capacity, uncontrollable proliferation rate, and ability to alter 
the niche around them to accommodate their energy 
requirements14. The recurrence, development, and chemical 
resistance of the CSCs must be inhibited or suppressed with 
target-specific and efficient therapy15. A novel approach may 
be developed, or existing treatments can be combined with 
other treatments16. 

Several pathways regulate CSC proliferation, including 
Wnt/ β-catenin, Hedgehog (Hh), Transforming Growth 
Factor-β (TGF-β), Janus Kinase-Signal Transducers, and 
Activators of Transcription (JAK-STAT), Phosphatidylinositol-
3-kinase/Protein kinase B (PI3K/Akt), Epidermal Growth 
Factor Receptor (EGFR), Nuclear factor-κB (NF-κB), Notch 
and B-cell- specific Moloney murine leukemia site 1 (Bmi-
1)17-19. Self-renewal and differentiation of CSCs are 
controlled by transcriptional regulators such as Nanog, 
Myc, Klf4, and Oct420. The CSCs develop when these 
pathways are altered, resulting in tumor growth, 
metastasis, and recurrence after treatment because of their 
ability to self-renew, multiply uncontrollably, and 
transform their surrounding niches to meet their energy 
needs21. The mechanisms and pathways controlling CSC 
functioning must be better understood to develop similar 
viable methodologies22. In addition, drugs and microRNAs 
are commonly used for each pathway, and potential 
therapeutic targets are identified to suppress the 
recurrence of CSCs 23. A novel drug-free approach that uses 
stem cells and cell-free treatments is then explored, 
combined with our hypothesis to explore innovative yet 
target-specific approaches24. The tumor microenvironment 
plays an essential role in regulating the CSC phenotype25. 
The purpose of this review is to provide a concise overview 
of the characteristics, biology, modes of developing 
multidrug resistance, therapeutic implications, and 
metastasis of CSCs, as well as the need to target CSCs 
specifically with an emphasis on the various strategies that 
are currently being developed to do so. 

 

2. Cancer stem cells origin and mechanism of 
action 
 

Bonnet et al. (1997) provided the first experimental 
evidence for cancer stem cells in acute myeloid leukemia, 
demonstrating that the CD34+CD38- leukemia cells 

possessed stem cell-like properties, such as proliferating, 
self-renewing, and differentiation26. The stem cells can 
initiate acute myeloid leukemia (AML) when inoculated 
into non-obese diabetic/severe combined immunodeficient 
mice (SCID). As a result, CD34+CD38- leukemia cells were 
considered CSCs. Cancer stem cells were found in solid 
tumors, including breast, liver, lung, head and neck, colon, 
pancreatic, glioma, stomach, glioma, bladder cancer, 
melanoma, and hepatocellular carcinoma27,28. The surface 
tags on CSCs, self-renewal ability, and regulatory signaling 
are similar to those on normal stem cells. Therefore, CSCs 
could arise when dormant normal stem cells are 
transformed into malignant cells by oncogenic mutations 
acquired over time, and this increasing mutational load 
plays a vital role in tumorigenesis and tumor growth29. 
CSCs may also be transformed through epigenetic changes 
(abnormal methylation or histone modifications), genetic 
mutations, and epidermal mesenchymal transition 
(EMT)30. A handful of embryonic stem cells (ESCs)-like cells 
may exist in other tissues or blood. An alternative theory 
proposes that stem cells become misplaced in the stroma 
due to basement membrane lesions, resulting in invasive 
tumors from these misplaced stem cells31-33. 

An embryonic stem cell is the quintessential 
pluripotent cell. ESCs originate from blastocysts and can 
differentiate into virtually any cell found in an embryo ’s 
three germ layers: mesoderm, ectoderm, and endoderm34. 
Their ability to generate diverse cell lines makes them a 
valuable resource for regenerative medicine and cancer 
therapy. Cancer research uses ESCs to study oncogenesis’ 
fundamental mechanisms in vivo35,36. These models can be 
used to study the mechanisms underlying cancer 
initiation metastasis progression and provide insight into 
the genetic alterations and molecular pathways involved 
in malignant transformation. Furthermore, ESCs play a 
crucial role in drug discovery, helping to identify novel 
anti-cancer agents and high-throughput screening 
therapeutic targets37.  

Mesenchymal stem cells (MSCs) can differentiate into 
adipocytes, osteoblasts, and chondrocytes, among other 
mesodermal lineages38. As a result of their ability to 
modulate the tumor microenvironment (TME), MSCs have 
received considerable attention in recent years39-41. It is 
important to note that MSCs have a dual nature when used 
to treat cancer. Alternatively, engineered MSCs may deliver 
targeted drugs directly to metastatic tumors, such as 
oncolytic viruses or cytotoxic agents42. As a result of their 
immunomodulatory properties, they may also have 
potential as cancer therapies aimed at enhancing immune 
function43-45. 

Numerous studies have been conducted to identify the 
genetic signatures that determine CSC self-renewal46,47. It 
has been shown that several signaling pathways and genes 
play essential roles in cancer stem cells and regulate 
normal48. There are several signaling pathways and genes 
that play an essential role. Notch is a transmembrane 
receptor that controls self-renewal, Hedgehog is a 
glycoprotein family associated with pro-survival pathways, 
wnt/β-catenin is from the a family of proteins that regulate 
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self-renewal, and Bmi-1 is a transcriptional repressor 
factor that regulates the expression of telomerase49-51. It 
has been shown that, in the absence of Wnt signaling, β-
catenin remains in the cytoplasm, where it forms a complex 
with glycogen synthase kinase GSK-3β, able to 
phosphorylate β-catenin, which undergoes degradation52. 
When the Wnt pathway is activated, GSK-3β is inhibited, 
blocking β-catenin phosphorylation53. Unphosphorylated 
β-catenin is stable and translocates to the nucleus; it binds 
to and activates T cell factor-lymphoid enhancer factor 
(TCF-LEF), which in turn dramatically increases the 
proliferation and self-renewal of CSCs when 
unphosphorylated 54. 

CSCs in the ovary have CD24+ and CD133+, acute 
myeloid leukemia stem cells are CD34+, CD38-,  head and 
neck CSCs are CD44+55-57. 

 

3. Targets and drugs regulating cancer stem 
cells 
 
3.1 Signaling pathways 

 
In cancer, several pathways responsible for stem cells 

growing, replicating, self-renewing, and differentiating 
poorly in a healthy environment are triggered or blocked 
abnormally58. Various endogenous and exogenous 
molecules, as well as miRNAs, regulate the complex 
pathways59. Several downstream genes are triggered by 
signaling pathways, including apoptosis,  proliferation, 
cytokines, and even metastasis60. Several of the genes in 
this group are interconnected by network signaling 
pathways that regulate the growth of CSCs61,62. Multiple 
pathways regulate CSC differentiation and self-renewal, 
including Hh, Bmi-1, Wnt/catenin, Bone Morphogenetic 
Protein (BMP), Notch, PI3K/Akt, and JAK-STAT 
signaling19,63.CSCs are, however, resistant to DNA damage-
induced cell death and are prevented from dying through 
anti-apoptotic signaling. A Notch pathway is involved in 
CSCs radioresistance64-66. Hence, Notch’s γ-secretase (GSI) 
inhibition enables glioma CSCs to become radiation-
sensitive67. By inactivating PI3K/Akt and increasing the 
levels of McCl-1 protein, radiation causes this DNA damage 
response to be triggered. Several transcription factors 
expressed in embryonic stem cells, including Nanog, Klf4, 
Oct4, c-Myc, and Sox2, may also be modulated to control 
CSC stemness development, ss, and proliferation68,69. Post-
clinical tests and pathway-targeting strategies can provide 
a promising approach to eradicating CSCs within tumor 
niches. Various small compounds or drugs and endogenous 
miRNAs can be used to target CSCs and be effective with 
fewer side effects70. 

 
3.2 The notch pathway 

 
Several cancers were associated with CSCs through 

the Notch pathway71. Evidence shows that gamma-
secretase inhibitors (GSIs) effectively eliminate CSCs in 
medulloblastoma, breast cancer, and glioma72. These 
inhibitors inhibit the protease necessary for Notch 

cleavage and activation. As a result of the Notch 
inhibition in intestinal stem cells, GSIs were found to be 
relatively nonselective drugs with dose-limiting gut 
toxicity (secretory diarrhea). Highly specific mAbs 
targeted Notch ligands and receptors with single target 
specificity73. CSCs (EpCAM+/CD44+/CD166+) can be 
reduced with antiDeltalike four ligands (DLL4, a 
membrane-associated Notch ligand) antibodies, alone or in 
combination with irinotecan. Breast cancer recurrence was 
suppressed more effectively by siRNA targeting Notch4 
rather than Notch174. 

 
3.3 The hedgehog pathway 

 
The activation of the Hedgehog (Hh) pathway has been 

associated with CSC maintenance and tumorigenesis in 
various tumor types, including multiple myeloma, 
myeloid leukemia, colorectal cancer, gastric cancer, and 
gliomas 75. As a result, several targeted therapies were 
developed. In certain types of cancer, such as brain and 
pancreatic cancer, an antagonist of the Hh coreceptor 
Smoothened (SMO), cyclopamine, can decrease CSC 
proportions or even eliminate CSCs 76. Aside from that, 
studies have shown that GDC0449 (also known as 
Vismodegib), an orally active SMO antagonist, is 
bioavailable in brain and basal cell carcinomas. With 
IPI269609, the SMO inhibitor, the proportion of ALDHbri 
CSCs in pancreatic tumor xenografts could be reduced77. 
Several therapeutic strategies targeting Hh pathways and 
combined inhibitors of the pathway have drawn the 
medical community’s attention. Combined treatments 
with gemcitabine, cyclopamine, or cyclopamine, 
rapamycin, and chemotherapy might reduce pancreatic 
CSC numbers in vivo to virtually undetectable levels78,79. 

 
3.4 The Wnt/ β -catenin pathway Aberrant 

 
Cancerous cells with abnormally activated Wnt/catenin 

pathways were closely linked to tumorigenesis. Deficiency 
in clonogenicity and tumorigenicity of tumors caused by an 
antibody that targets frizzled7, a Wnt receptor 80. It has 
been found that Dickkopf1 (Dkk1), a primary secreted 
antagonist of Wnt signaling, binds to low-density 
lipoprotein receptor-related protein6 (LRP6), an essential 
coreceptor for canonical signaling 81. An antibiotic 
potassium ionophore, salinomycin, has been shown to 
inhibit breast CSCs and block LR P6’s phosphorylation to 
block the Wnt pathway 82 (Figure 1). 

 

4. Cancer stem cells and metastasis 
 
Primary solid tumor cells invade adjacent and distant 

tissues, eventually growing into secondary tumors, which 
is the process of metastasis83. There is no conclusive way to 
determine cancer cell metastatic potential simply by 
accumulating genetic alterations and expressing factors 
from the cancer cells 84. It is also important to note that 
cancer cells interact with extracellular matrix components 
(ECM) and stromal tissue compartments, which are  
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Figure 1. Diverse spectrum of stem cell types and their pivotal roles in cancer therapy and regenerative medicine. The figure portrays the remarkable 
pluripotency of Embryonic Stem Cells (ESCs), the cellular reprogramming process of Induced Pluripotent Stem Cells (iPSCs), the niche-specific locations 
of Adult Stem Cells within tissues, the dual nature of Mesenchymal Stem Cells (MSCs) in the tumor microenvironment, and Hematopoietic Stem Cells 
(HSCs) as the progenitors of various blood cell lineages. Each depicted stem cell type showcases its unique attributes and contributions, offering insights 
into their potential applications in the field of oncology and regenerative medicine.” 

 
essential for metastasis 85. 

During the early stages of metastasis, establishing the 
‘pre-metastatic niche’ independent of the signals 
emanating from the stromal microenvironment may be 
the first indication of the spreading of cancer cells.  It is a 
highly specialized microenvironment that facilitates the 
migration of tumor cells to distinct sites, homing and 
colonization of tumor cells at the new site, and 
subsequent enhancement of tumor cell proliferation and 
disease development, similar to the CSC niche at the 
primary tumor site. Studies have revealed similarities 
between metastatic stem cells (MetSCs) and primary 
CSCs86. Analysis of large-scale genome sequencing has 
also revealed that metastasis-promoting mutations are 
accumulated in primary cancers. Through site-specific 
delivery of CSCs, researchers demonstrated that cellular 
bookmarking resulted in pre-metastatic niches 
(permissive niches) in target organs87. Metastatic 
mutations associated with relapse and poor prognosis 
are identified through gene expression signatures in 
primary tumors88. A breast cancer patient’s stem-cell 
markers were inoculated into immunodeficient mice, 
forming bone, lung, and liver metastases89. In studies, 
metastases originate from early-stage cancer cells with 

long-term self-renewal capacities, quiescent and 
chemotherapy-resistant90,91. In melanoma, the presence 
of MetSCs has even been reported that does not appear 
to follow a hierarchical structure 92. studies support the 
idea that primary tumors and metastases arise from 
different cell types; Metscs are likely simply developing 
from the CSCs that developed throughout tumor 
progression or through MetSC regeneration93. 

 

5. Cancer stem cells and angiogenesis 
 
Numerous studies have examined the relationship 

between angiogenesis and CSCs94. In a study, Conley et 
al.2012, as well as Chau and Figg, presented a hypothesis 
that inhibiting angiogenesis could cause hypoxia, which 
would result in increased tumor growth rates and 
metastases as a consequence of an increase in the CSC 
population through activation of the Akt/β catenin 
pathway95,96. Researchers found that CSCs produce 
vascular endothelial growth factor (VEGF) higher under 
normoxic or hypoxic conditions than non-CSCs in tumors96. 
By increasing VEGF levels, endothelial cells migrate faster, 
forming new blood vessels. As a result of bevacizumab 
administration in vivo, hemorrhages and vascular growth 
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from CSC xenografts were inhibited96. Individuals with 
angiogenesis and CSCs can have a mutually beneficial 
relationship, and antiangiogenic therapy may increase 
the number of CSCs and increase VEGF production. A 
study by Bao et al. 97 indicated that stem cell-like gliomas 
(SCLGC) with CD133+ CSCs develop dense vascular 
networks. In the CD133+ plus SCLGC complex, VEGF 
expression was ten times higher, but tumor growth was 
reduced by bevacizumab treatment. There is a possibility 
that similar phenomena develop in cancers that affect 
other organs as well. The Notch pathway used by CSCs is 
believed to be involved in angiogenesis and CSC self-
renewal, based on a review by Zhao et al. 2011 The 
STAT3 signaling pathway promotes the angiogenesis of 
tumors, and activation of NF-kB by CSCs could result in 
these cells degenerating into functional endothelial 
cells98. Angiogenesis markers (VEGF, Ang1 and Ang2, Tie, 
VEGF-C, PL-EGF) correlate with many CSC biomarkers. 

Additionally, it has been found that CSCs express 
VEGFR, resulting in the nesting of these cells in significant 
metastatic sites, also referred to as vascular niches99,100. 
Additionally, VLA-4 is expressed by VEGFR1+. Fibronectin 
is the ligand that promotes the adhesion of circulating 
tumor cells101,102. This niche consists of potential 
properties essential for the survival of CSCs, including 
self-renewal and differentiation, as well as providing a 
potential site for cancer metastasis103-105. An antibody 
against VEGF1 can partially prevent metastases by 

destroying the vascular niche106. It has been determined 
that inflammatory cytokines, such as IL-17, are 
responsible for the self-renewal of CSCs and cancer 
metastasis107,108. A recent study shows that combination 
therapy with trastuzumab (anti-HER2 monoclonal 
antibody) and salinomycin effectively targets CSCs and 
cancer cells expressing HER2109. It has been 
demonstrated that overexpression of HER2 is closely 
associated with increased expression of VEGF in human 
tumor cells110. 

Additionally, salinomycin inhibits angiogenesis (blood 
vessel formation) for the metastasis and growth of cancer. 
Tao Li and colleagues say salinomycin inhibits tumor 
angiogenesis with intense and exciting pieces of 
evidence111. Several aspects of angiogenesis, including 
migration and capillary structure formation endothelial cell 
proliferation, have been inhibited by salinomycin in vitro at 
relatively low concentrations in this study111. Salinomycin 
was shown to act directly on both tumor cells and tumor 
endothelial cells. It has been shown that salinomycin 
inhibits ATP binding to the binding pocket of the VEGFR2 
to inhibit multiple aspects of vascular endothelial 
angiogenic signaling111. 

In conclusion, salinomycin exerts its antiangiogenic 
effect via the VEGFR2 signaling pathway. Furthermore, 
salinomycin suppresses angiogenesis and tumor growth in 
a mouse model of human gastric cancer xenografts112 
(Figure 2). 

 

 
Figure 2. Metastatic stem cells (MetSCs) and their role in the metastasis process. This illustration details the critical steps in metastasis initiated by 
MetSCs. Within the bone marrow, distinct MetSCs are highlighted with unique markers, setting them apart from normal cells and cancer cells. The blood 
circulation pathway is emphasized, showcasing how MetSCs detach from the primary tumor site and enter the bloodstream. Their journey through the 
bloodstream is a crucial phase in the metastasis process. Upon arrival at a secondary tumor site, such as the lungs, MetSCs adhere to the blood vessel 
walls and commence the formation of a new tumor. This figure provides a comprehensive visual narrative of MetSCs’ involvement in metastasis, from 
their origin in the bone marrow to their role in establishing secondary tumors. 
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6. Future Prospects 
 
The CSC (Cancer Stem Cell) model provides a novel 

perspective on cancer, different from the conventional 
view that treats cancer as a dysfunction of somatic 
(normal) cells. According to the CSC hypothesis, cancer is 
not just a disease of bulk tumor cells; rather, it is rooted 
in a small population of specialized cells within tumors 
known as cancer stem cells. These cells possess unique 
properties similar to normal stem cells, including self-
renewal and differentiation capabilities. Unlike other 
cancer cells, CSCs have the ability to initiate tumor 
formation, drive cancer progression, and resist 
conventional cancer treatments. One of the key reasons 
conventional cancer therapies struggle to eradicate 
cancer completely is their inability to effectively target 
CSCs. Standard treatments like chemotherapy and 
radiation primarily target rapidly dividing cells, which 
are common in most tumors. However, CSCs divide 
slowly and are often resistant to these therapies. When 
the bulk of the tumor is destroyed, CSCs can survive and 
regenerate, leading to disease relapse and metastasis. 
This phenomenon explains why cancer can reoccur even 
after seemingly successful treatments. 

Moreover, CSCs are known to develop multidrug 
resistance, making them highly challenging to eliminate. 
Several factors contribute to the development of this 
resistance, including genetic mutations, activation of 
specific molecular pathways, and the presence of 
protective niches within the tumor microenvironment. 
These niches provide a supportive environment for CSCs, 
allowing them to evade the immune system and resist the 
toxic effects of chemotherapy drugs. 

Understanding the CSC model is crucial for developing 
more effective cancer therapies. Researchers are 
exploring targeted therapies that specifically aim to 
eradicate CSCs or disrupt the supportive 
microenvironments that sustain them. By targeting the 
root cause of cancer – the CSCs – scientists hope to 
develop treatments that not only shrink tumors but also 
prevent relapse and metastasis, ultimately leading to 
more successful and long-lasting outcomes for cancer 
patients.Additionally, tumor cells’ ability to undergo EMT 
and spread throughout the body, resulting in metastasis 
and distant tumor formation in various parts of the 
body, poses the most significant challenge to treatment.  
Hence, targeting CSCs is essential to overcoming the 
limitations of conventional chemo and radiotherapy. 
Surface biomarkers have facilitated the identification 
and targeting of CSCs. Targeted therapy only applies to 
CSCs of specific phenotypes because there is no 
universal CSC marker. Many strategies have been used 
to target CSCs. However, most of these studies were 
conducted in vitro, and they have yet to be tested in 
clinical settings, primarily due to the non-specificity of 
the strategies and potential toxicity to normal cells and 
stem cells. Various natural products have been proven to 
inhibit CSC by modulating the critical signaling pathways 
implicated in drug resistance, CSC self-renewal, and 

differentiation. It has also been shown that combinations of 
two or more drugs can overcome CSC drug resistance. 
Combining small molecules with conventional therapies 
can target both CSCs and differentiated cancer cells 
simultaneously, resulting in complete eradication of the 
cancer with a low chance of recurrence. The development 
of nanoparticles targeting CSCs has also gained interest. 
Recently, targeting specific CSC genes with RNA structures 
such as hairpin loops or miRNAs has gained considerable 
attention. Nanoparticles conjugated with ligands that bind 
specifically to CSC surface markers, cytotoxic drugs (or 
combinations of such drugs or small molecules) to 
eradicate CSCs, inhibitory molecules to overcome drug 
resistance or block key signaling pathways, and imaging 
agents to facilitate tumor diagnosis and the spread of 
nanoparticles in the body will undoubtedly prove effective 
strategies for targeting CSCs. The future challenges include 
developing better experimental systems, developing novel 
and specific strategies for targeting CSCs and avoiding 
toxicity to somatic cells and normal stem cells,  improving 
the efficiency of CSC identification, and developing new 
carriers for delivering drugs efficiently to CSCs. 
 

7. Conclusion 
 
Recent in vivo research has illuminated the 

remarkable potential of stem cells in cancer treatment. 
Stem cells, with their unique regenerative and 
differentiation capabilities, have emerged as versatile 
tools with transformative implications for cancer 
therapy. They can be engineered to serve as precise 
tumor-targeting agents, revolutionizing drug delivery by 
homing in on cancer cells and releasing therapeutic 
agents within the tumor microenvironment. This 
precision enhances drug efficacy while minimizing harm 
to healthy tissues. Stem cells also exhibit 
immunomodulatory properties that enhance cancer 
immunotherapy. When combined with checkpoint 
inhibitor therapy, they offer innovative ways to boost the 
body’s immune response against cancer, expanding the 
impact of immunotherapy. Furthermore, in-vivo research 
has deepened our understanding of the complex 
interplay between stem cells and cancer cells, shedding 
light on tumor biology, initiation, progression, and 
resistance mechanisms. This knowledge provides a 
foundation for the development of more tailored and 
effective cancer treatments. In conclusion, these in-vivo 
discoveries herald a promising future in cancer 
treatment, with more effective, patient-centered 
approaches on the horizon. 
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